(c) Copyright 2010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

The Common-Source Amplifier

Basic Circuit

Fig. 1 shows the circuit diagram of a single stage common-emitter amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output resistance.

Figure 1: Common-source amplifier.

DC Solution

(a) Replace the capacitors with open circuits. Look out of the 3 MOSFET terminals and make Thévenin equivalent circuits as shown in Fig. 2.

$$
\begin{gathered}
V_{G G}=\frac{V^{+} R_{2}+V^{-} R_{1}}{R_{1}+R_{2}} \quad R_{G G}=R_{1} \| R_{2} \\
V_{S S}=V^{-} \quad R_{S S}=R_{S} \quad V_{D D}=V^{+} \quad R_{D D}=R_{D}
\end{gathered}
$$

(b) Write the loop equation between the $V_{G G}$ and the $V_{S S}$ nodes.

$$
V_{G G}-V_{S S}=V_{G S}+I_{S} R_{S S}=V_{G S}+I_{D} R_{S S}
$$

(c) Use the equation for the drain current to solve for $V_{G S}$.

$$
V_{G S}=\sqrt{\frac{I_{D}}{K}}+V_{T O}
$$

Figure 2: Bias circuit.
(d) Solve the equations simultaneously.

$$
I_{D} R_{S S}+\sqrt{\frac{I_{D}}{K}}+\left[\left(V_{G G}-V_{S S}\right)-V_{T O}\right]=0
$$

(e) Let $V_{1}=\left(V_{G G}-V_{S S}\right)-V_{T O}$. Solve the quadratic for I_{D}.

$$
I_{D}=\left(\frac{\sqrt{1+4 K V_{1} R_{S S}}-1}{2 \sqrt{K} R_{S S}}\right)^{2}
$$

(d) Verify that $V_{D S}>V_{G S}-V_{T O}=\sqrt{I_{D} / K}$ for the active mode.

$$
V_{D S}=V_{D}-V_{S}=\left(V_{D D}-I_{D} R_{D D}\right)-\left(V^{-}+I_{D} R_{S S}\right)=V_{D D}-V_{S S}-I_{D} R_{D D}
$$

Small-Signal or AC Solutions

(a) Redraw the circuit with $V^{+}=V^{-}=0$ and all capacitors replaced with short circuits as shown in Fig. 3.
(b) Calculate g_{m}, r_{s}, and r_{0} from the DC solution.

$$
g_{m}=2 \sqrt{K I_{D}} \quad r_{s}=\frac{1}{g_{m}} \quad r_{0}=\frac{\lambda^{-1}+V_{D S}}{I_{D}}
$$

(c) Replace the circuits looking out of the gate and source with Thévenin equivalent circuits as shown in Fig. 4.

$$
v_{t g}=v_{i} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \quad R_{t g}=R_{1}\left\|R_{2} \quad v_{t e}=0 \quad R_{t s}=R_{S}\right\| R_{3}
$$

Figure 3: Signal circuit.

Figure 4: Signal circuit with Thévenin gate circuit.

Exact Solution

(a) Replace the circuit seen looking into the drain with its Norton equivalent circuit as shown in Fig. 5. Solve for $i_{d(s c)}$.

$$
\begin{array}{r}
i_{d(s c)}=G_{m g} v_{t g}=G_{m g} v_{i} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \\
G_{m g}=\frac{1}{r_{s}+R_{t s} \| r_{0}} \frac{r_{0}}{r_{0}+R_{t s}} \\
i_{d(s c)}
\end{array}
$$

Figure 5: Norton drain circuit.
(b) Solve for v_{o}.

$$
\begin{gathered}
v_{o}=-i_{d(s c)} r_{i d}\left\|R_{D}\right\| R_{L}=-G_{m g} v_{i} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} r_{i d}\left\|R_{D}\right\| R_{L} \\
r_{i d}=\frac{r_{0}+r_{s} \| R_{t s}}{1-R_{t s} /\left(r_{s}+R_{t e}\right)}=r_{0}\left(1+\frac{R_{t s}}{r_{s}^{\prime}}\right)+R_{t s}
\end{gathered}
$$

(c) Solve for the voltage gain.

$$
A_{v}=\frac{v_{o}}{v_{i}}=-G_{m s} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} r_{i d}\left\|R_{D}\right\| R_{L}
$$

(d) Solve for $r_{i n}$.

$$
r_{i n}=R_{1} \| R_{2}
$$

(e) Solve for $r_{\text {out }}$.

$$
r_{o u t}=r_{i d} \| R_{D}
$$

(d) Special case for $R_{t s}=0$.

$$
G_{m g}=\frac{1}{r_{s}}=g_{m} \quad r_{i d}=r_{0}
$$

Example 1 For the CS amplifier of Fig. ??, it is given that $R_{i}=5 \mathrm{k} \Omega, R_{1}=5 \mathrm{M} \Omega$, $R_{2}=1 \mathrm{M} \Omega, R_{D}=10 \mathrm{k} \Omega, R_{S}=3 \mathrm{k} \Omega, R_{3}=50 \Omega, R_{L}=20 \mathrm{k} \Omega, V^{+}=24 \mathrm{~V}, V^{-}=-24 \mathrm{~V}$, $K_{0}=0.001 \mathrm{~A} / \mathrm{V}^{2}, V_{T O}=1.75 \mathrm{~V}, \lambda=0.016 \mathrm{~V}^{-1}$. Solve for the gain $A_{v}=v_{o} / v_{i}$, the input resistance $r_{i n}$, and the output resistance $r_{\text {out }}$. The capacitors can be assumed to be ac short circuits at the operating frequency.

Solution. For the dc bias solution, replace all capacitors with open circuits. The Thévenin voltage and resistance seen looking out of the gate are

$$
V_{G G}=\frac{V^{+} R_{2}+V^{-} R_{1}}{R_{1}+R_{2}}=-16 \mathrm{~V} \quad R_{B B}=R_{1} \| R_{2}=833.3 \mathrm{k} \Omega
$$

The Thévenin voltage and resistance seen looking out of the source are $V_{S S}=V^{-}$and $R_{S S}=R_{S}$. To calculate I_{D}, we neglect the Early effect by setting $K=K_{0}$. The bias equation for I_{D} is

$$
I_{D}=\left(\frac{\sqrt{1+4 K V_{1} R_{S S}}-1}{2 \sqrt{K} R_{S S}}\right)^{2}=1.655 \mathrm{~mA}
$$

To test for the active mode, we calculate the drain-source voltage

$$
V_{D S}=V_{D}-V_{S}=\left(V^{+}-I_{D} R_{D}\right)-\left(V^{-}+I_{D} R_{S S}\right)=26.491 \mathrm{~V}
$$

This must be greater than $V_{G S}-V_{T O}=\sqrt{I_{D} / K}=1.286 \mathrm{~V}$. It follows that the MOSFET is biased in its active mode.

For the small-signal ac analysis, we need g_{m}, r_{s}, and r_{0}. When the Early effect is accounted for, the new value of K is given by

$$
K=K_{0}\left(1+\lambda V_{D S}\right)=1.424 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2}
$$

Note that this is an approximation because the Early effect was neglected in calculating $V_{D S}$. However, the approximation should be close to the true value. It follows that g_{m}, r_{s}, and r_{0} are given by

$$
\begin{gathered}
g_{m}=2 \sqrt{K I_{D}}=3.07 \times 10^{-3} \mathrm{~A} / \mathrm{V} \quad r_{s}=\frac{1}{g_{m}}=325.758 \Omega \\
r_{0}=\frac{\lambda^{-1}+V_{D S}}{I_{D}}=53.78 \mathrm{k} \Omega
\end{gathered}
$$

For the small-signal analysis, V^{+}and V^{-}are zeroed and the three capacitors are replaced with ac short circuits. The Thévenin voltage and resistance seen looking out of the gate are given by

$$
v_{t g}=v_{i} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}}=0.994 v_{i} \quad R_{t g}=R_{i}\left\|R_{1}\right\| R_{2}=4.97 \mathrm{k} \Omega
$$

The Thévenin resistances seen looking out of the source and the drain are

$$
R_{t s}=R_{S}\left\|R_{3}=49.18 \Omega \quad R_{t d}=R_{D}\right\| R_{L}=6.667 \mathrm{k} \Omega
$$

Next, we calculate $G_{m g}$ and $r_{i d}$

$$
\begin{aligned}
G_{m g} & =\frac{1}{r_{s}+R_{t s} \| r_{0}} \frac{r_{0}}{r_{0}+R_{t s}}=\frac{1}{375.237} \mathrm{~S} \\
r_{i d} & =r_{0}\left(1+\frac{R_{t s}}{r_{s}}\right)+R_{t s}=61.95 \mathrm{k} \Omega
\end{aligned}
$$

The output voltage is given by

$$
v_{o}=-G_{m g} \times\left(r_{i d} \| R_{t d}\right) v_{t g}=-G_{m g} \times\left(r_{i d} \| R_{t d}\right) \times 0.916 v_{i}=-15.945 v_{i}
$$

Thus the voltage gain is

$$
A_{v}=\frac{v_{o}}{v_{i}}=-15.945
$$

The input and output resistances are given by

$$
r_{\text {in }}=R_{1}\left\|R_{2}=833.3 \mathrm{k} \Omega \quad r_{\text {out }}=r_{\text {id }}\right\| R_{D}=8.61 \mathrm{k} \Omega
$$

Approximate Solutions

These solutions assume that $r_{0}=\infty$ except in calculating $r_{i d}$. In this case, $i_{d(s c)}=i_{d}^{\prime}=i_{s}^{\prime}$.

Source Equivalent Circuit Solution

(a) After making the Thévenin equivalent circuits looking out of the gate and source, replace the MOSFET with the source equivalent circuit as shown in Fig. 6.

Figure 6: Source equivalent circuit.
(b) Solve for $i_{d}^{\prime}=i_{s}^{\prime}$ and $r_{i d}$.

$$
\begin{gathered}
v_{t g}=i_{s}^{\prime}\left(r_{e}^{\prime}+R_{t e}\right)=i_{d}^{\prime}\left(r_{s}+R_{t s}\right) \Longrightarrow i_{d}^{\prime}=v_{t g} \frac{1}{r_{s}+R_{t s}} \\
r_{i d}=\frac{r_{0}+r_{s} \| R_{t s}}{1-R_{t s} /\left(r_{s}+R_{t e}\right)} \stackrel{\text { or }}{=} r_{0}\left(1+\frac{R_{t s}}{r_{s}^{\prime}}\right)+R_{t s}
\end{gathered}
$$

(c) Solve for v_{o} and $A_{v}=v_{o} / v_{i}$.

$$
\begin{gathered}
v_{o}=-i_{d}^{\prime} r_{i d}\left\|R_{D}\right\| R_{L}=v_{t g} \frac{-1}{r_{s}+R_{t s}} r_{i d}\left\|R_{D}\right\| R_{L}=-v_{i} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \frac{1}{r_{s}+R_{t s}} r_{i d}\left\|R_{D}\right\| R_{L} \\
R_{t s}=R_{S} \| R_{3}
\end{gathered}
$$

$$
A_{v}=\frac{v_{o}}{v_{i}}=-\frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \frac{1}{r_{s}+R_{t s}} r_{i d}\left\|R_{D}\right\| R_{L}
$$

Note that this is of the form

$$
A_{v}=\frac{v_{t g}}{v_{i}} \times \frac{i_{s}^{\prime}}{v_{t g}} \times \frac{i_{d}^{\prime}}{i_{s}^{\prime}} \times \frac{v_{o}}{i_{d}^{\prime}}
$$

(d) Solve for $r_{\text {out }}$.

$$
r_{o u t}=r_{i d} \| R_{D}
$$

Example 2 Use the simplified T-model solutions to calculate the values of $A_{v}, r_{i n}$, and $r_{\text {out }}$ for Example 1.

$$
\begin{gathered}
A_{v}=0.994 \times\left(2.667 \times 10^{-3}\right) \times\left(-6.019 \times 10^{3}\right)=-15.957 \\
r_{\text {in }}=833.3 \mathrm{k} \Omega \quad r_{i d}=61.95 \mathrm{k} \Omega \quad r_{\text {out }}=8.61 \mathrm{k} \Omega
\end{gathered}
$$

π Model Solution
(a) After making the Thévenin equivalent circuits looking out of the gate and source, replace the MOSFET with the π model as shown in Fig. 7.

Figure 7: Hybrid π model circuit.
(b) Solve for i_{d}^{\prime} and $r_{i d}$.

$$
\begin{gathered}
v_{t g}=v_{\pi}+i_{s}^{\prime} R_{t s}=\frac{i_{d}^{\prime}}{g_{m}}+i_{d}^{\prime} R_{t s} \Longrightarrow i_{d}^{\prime}=\frac{v_{t g}}{\frac{1}{g_{m}}+R_{t s}} \\
r_{i d}=\frac{r_{0}+r_{s} \| R_{t s}}{1-R_{t s} /\left(r_{s}+R_{t e}\right)}=r_{0}\left(1+\frac{R_{t s}}{r_{s}^{\prime}}\right)+R_{t s}
\end{gathered}
$$

(c) Solve for v_{o}.

$$
v_{o}=-i_{d}^{\prime} r_{i d}\left\|R_{D}\right\| R_{L}=-\frac{v_{t g}}{\frac{1}{g_{m}}+R_{t s}} r_{i d}\left\|R_{D}\right\| R_{L}=v_{i} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \frac{-r_{i d}\left\|R_{D}\right\| R_{L}}{\frac{1}{g_{m}}+R_{t s}}
$$

(d) Solve for the voltage gain.

$$
A_{v}=\frac{v_{o}}{v_{i}}=\frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \frac{1}{\frac{1}{g_{m}}+R_{t s}}\left(-r_{i d}\left\|R_{D}\right\| R_{L}\right)
$$

This is of the form

$$
A_{v}=\frac{v_{t g}}{v_{i}} \times \frac{i_{d}^{\prime}}{v_{t g}} \times \frac{v_{o}}{i_{d}^{\prime}}
$$

(e) Solve for $r_{i n}$.

$$
r_{i n}=R_{1} \| R_{2}
$$

(f) Solve for $r_{\text {out }}$.

$$
r_{o u t}=r_{i d} \| R_{D}
$$

Example 3 Use the π-model solutions to calculate the values of $A_{v}, r_{i n}$, and $r_{\text {out }}$ for Example 1.

$$
\begin{gathered}
A_{v}=0.994 \times\left(2.667 \times 10^{-3}\right) \times\left(-6.019 \times 10^{3}\right)=-15.957 \\
r_{i n}=833.3 \mathrm{k} \Omega \quad r_{i d}=61.95 \mathrm{k} \Omega \quad r_{\text {out }}=8.61 \mathrm{k} \Omega
\end{gathered}
$$

T Model Solution

(a) After making the Thévenin equivalent circuits looking out of the gate and source, replace the MOSFET with the T model as shown in Fig. 8.

Figure 8: T model circuit.
(b) Solve for i_{d}^{\prime}.

$$
v_{t g}=i_{s}^{\prime}\left(r_{s}+R_{t s}\right)=i_{d}^{\prime}\left(r_{s}+R_{t s}\right) \Longrightarrow i_{d}^{\prime}=\frac{v_{t g}}{r_{s}+R_{t s}}
$$

(c) Solve for v_{o}.

$$
v_{o}=-i_{d}^{\prime} r_{i d}\left\|R_{D}\right\| R_{L}=-\frac{v_{t g}}{r_{s}+R_{t s}} r_{i d}\left\|R_{D}\right\| R_{L}=v_{i} \frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \frac{-r_{i d}\left\|R_{D}\right\| R_{L}}{r_{s}+R_{t s}}
$$

(d) Solve for the voltage gain.

$$
A_{v}=\frac{v_{o}}{v_{i}}=\frac{R_{1} \| R_{2}}{R_{i}+R_{1} \| R_{2}} \frac{1}{r_{s}+R_{t s}}\left(-r_{i d}\left\|R_{D}\right\| R_{L}\right)
$$

(e) Solve for $r_{i n}$.

$$
r_{i n}=R_{1} \| R_{2}
$$

(f) Solve for $r_{\text {out }}$.

$$
r_{o u t}=r_{i d} \| R_{D}
$$

Example 4 Use the T-model solutions to calculate the values of $A_{v}, r_{i n}$, and $r_{\text {out }}$ for Example 1.

$$
\begin{gathered}
A_{v}=0.994 \times\left(2.667 \times 10^{-3}\right) \times\left(-6.019 \times 10^{3}\right)=-15.957 \\
r_{i n}=833.3 \mathrm{k} \Omega \quad r_{i d}=61.95 \mathrm{k} \Omega \quad r_{\text {out }}=8.61 \mathrm{k} \Omega
\end{gathered}
$$

