ECE 3050 Analog Electronics -MOSFET and JFET Formula Summary

Equations are for the n-channel MOSFET. For the p-channel device, reverse the directions of all current labels and reverse the order of subscripts involving node labels, i.e. $V_{D S}$ becomes $V_{S D}$. If the body is connected to the source, set $v_{T H}=V_{T O}$ and $\chi=0$. For the JFET equations, omit the body lead, set $\chi=0, v_{T H}=V_{T O}$, and replace K with β, where $\beta=\beta_{0}\left(1+\lambda v_{D S}\right)$.

$$
\begin{gathered}
i_{D}=K\left(v_{G S}-v_{T H}\right)^{2}=I_{D S S}\left(1-\frac{v_{G S}}{v_{T H}}\right)^{2} \quad v_{T H}=V_{T O}+\gamma\left(\sqrt{\phi-v_{B S}}-\sqrt{\phi}\right) \\
I_{D S S}=K V_{T O}^{2} \quad i_{S}=i_{D} \quad i_{G}=0 \quad K=K_{0}\left(1+\lambda v_{D S}\right) \quad K_{0}=\frac{k^{\prime}}{2} \frac{W}{L} \quad k^{\prime}=\mu C_{o x} \\
v_{D S} \geq v_{G S}-v_{T H} \quad i_{d}^{\prime}=i_{s}^{\prime}=g_{m} v_{g s}+g_{m b} v_{b s} \quad g_{m}=2 \sqrt{K I_{D}}=\frac{-2}{V_{T O}} \sqrt{I_{D} I_{D S S}} \\
g_{m b}=\chi g_{m} \quad \chi=\frac{\gamma}{2 \sqrt{\phi-V_{B S}}} \quad r_{0}=\frac{\lambda^{-1}+V_{D S}}{I_{D}} \quad r_{s}=\frac{1}{g_{m}} \quad r_{s}^{\prime}=\frac{r_{s}}{1+\chi} \\
i_{d(s c)}=G_{m g} v_{t g}-G_{m s} v_{t s} \quad G_{m g}=\frac{1}{1+\chi} \frac{1}{r_{s}^{\prime}+R_{t s} \| r_{0}} \frac{r_{0}}{r_{0}+R_{t s}} \quad G_{m s}=\frac{1}{R_{t s}+r_{s}^{\prime} \| r_{0}} \\
r_{i d}=r_{0}\left(1+\frac{R_{t s}}{r_{s}^{\prime}}\right)+R_{t s} \quad v_{s(o c)}=\frac{v_{t g}}{1+\chi} \frac{r_{0}}{r_{s}^{\prime}+r_{0}} \quad r_{i s}=r_{s}^{\prime} \frac{r_{0}+R_{t d}}{r_{s}^{\prime}+r_{0}}
\end{gathered}
$$

r_{0} Approximations - Assume $r_{0}=\infty$ except when calculating $r_{i d}$

$$
\begin{gathered}
i_{s}=i_{s}^{\prime} \quad i_{d(s c)}=i_{d}^{\prime}=i_{s}^{\prime}=G_{m g} v_{t g}-G_{m s} v_{t s} \quad G_{m g}=\frac{1}{1+\chi} \frac{1}{r_{s}^{\prime}+R_{t s}} \quad G_{m s}=\frac{1}{r_{s}^{\prime}+R_{t s}} \\
r_{s}=\frac{1}{g_{m}} \quad r_{s}^{\prime}=\frac{r_{s}}{1+\chi} \quad r_{i d}=r_{0}\left(1+\frac{R_{t s}}{r_{s}^{\prime}}\right)+R_{t s} \quad v_{s(o c)}=\frac{v_{t g}}{1+\chi} \quad r_{i s}=r_{s}^{\prime}
\end{gathered}
$$

