Common-Drain Amplifier Example
$\mathrm{K}_{\text {prime }}:=0.002 \quad \mathrm{~W}:=1 \quad \mathrm{~L}:=1 \quad \mathrm{~V}_{\mathrm{TO}}:=1.75 \quad \lambda:=0.016 \quad \chi:=0$
$\mathrm{V}_{\text {plus }}:=24 \quad \mathrm{~V}_{\text {minus }}:=-24 \quad \mathrm{R}_{1}:=5 \cdot 10^{6} \quad \mathrm{R}_{2}:=1 \cdot 10^{6}$
$\mathrm{R}_{\mathrm{S}}:=3 \cdot 10^{3} \quad \mathrm{R}_{\mathrm{L}}:=20 \cdot 10^{3} \quad \mathrm{R}_{\mathrm{S}}:=5 \cdot 10^{3} \quad \mathrm{R}_{\mathrm{p}}(\mathrm{x}, \mathrm{y}):=\frac{\mathrm{x} \cdot \mathrm{y}}{\mathrm{x}+\mathrm{y}}$

DC Bias Solution

$\mathrm{V}_{\mathrm{GG}}:=\frac{\mathrm{V}_{\text {plus }} \cdot \mathrm{R}_{2}+\mathrm{V}_{\text {minus }} \cdot \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{~V}_{\mathrm{GG}}=-16 \quad \quad \mathrm{~V}_{\mathrm{SS}}:=\mathrm{V}_{\text {minus }} \quad \mathrm{R}_{\mathrm{SS}}:=\mathrm{R}_{\mathrm{S}}$
$\mathrm{V}_{1}:=\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{TO}} \quad \mathrm{V}_{1}=6.25$
We neglect the Early effect, i.e. set $\lambda=0$ to solve for the drain bias current.
$\mathrm{K}:=\mathrm{K}_{\text {prime }} \cdot \frac{\mathrm{W}}{\mathrm{L}}$
$\mathrm{I}_{\mathrm{D}}:=\frac{1}{2 \cdot \mathrm{~K} \cdot \mathrm{R}_{\mathrm{S}}{ }^{2}} \cdot\left(\sqrt{1+2 \cdot \mathrm{~K} \cdot \mathrm{~V}_{1} \cdot \mathrm{R}_{\mathrm{S}}}-1\right)^{2} \quad \mathrm{I}_{\mathrm{D}}=1.655 \cdot 10^{-3}$
$\mathrm{V}_{\mathrm{D}}:=\mathrm{V}_{\text {plus }} \quad \mathrm{V}_{\mathrm{D}}=24 \quad \mathrm{~V}_{\mathrm{S}}:=\mathrm{V}_{\text {minus }}+\mathrm{I}_{\mathrm{D}} \cdot \mathrm{R}_{\mathrm{S}} \quad \mathrm{V}_{\mathrm{S}}=-19.036$
$\mathrm{v}_{\mathrm{DS}}:=\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}} \quad \mathrm{V}_{\mathrm{DS}}=43.036$
$\mathrm{v}_{\mathrm{GS}}:=\mathrm{V}_{\mathrm{GG}}-\mathrm{v}_{\mathrm{S}} \quad \mathrm{V}_{\mathrm{GS}}=3.036 \quad \mathrm{v}_{\mathrm{GS}}-\mathrm{v}_{\mathrm{TO}}=1.286$

Because $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TO}}$, the MOSFET is in the active or saturated state.
Here is an exact solution for the drain current. Note that MathCad requires numbers for everything except the variable being solved for. The drain-source voltage in the equation is $48-\mathrm{I}_{\mathrm{D}} \cdot 13 \cdot 10^{3}$
$\mathrm{I}_{\mathrm{D}}=\frac{1}{4 \cdot 10^{-3} \cdot\left[1+0.016 \cdot\left(48-\mathrm{I}_{\mathrm{D}} \cdot 3 \cdot 10^{3}\right)\right] \cdot 3000^{2}} \cdot\left[\sqrt{1+4 \cdot 10^{-3} \cdot\left[1+\left[0.016 \cdot\left(48-\mathrm{I}_{\mathrm{D}} \cdot 3 \cdot 10^{3}\right)\right]\right] \cdot 6.25 \cdot 3000}-1\right]^{2}$
.0017441295129196544703 This is the exact solution for I_{D} including the Early effect. We will use the approximate solution for the ac analysis below. solving for the drain current.

Now for the ac solution.

$\mathrm{K}:=\mathrm{K}_{\text {prime }} \cdot \frac{\mathrm{W}}{\mathrm{L}} \cdot\left(1+\lambda \cdot \mathrm{V}_{\mathrm{DS}}\right) \quad \mathrm{K}=3.377 \cdot 10^{-3} \quad \mathrm{~g}_{\mathrm{m}}:=\sqrt{2 \cdot \mathrm{~K} \cdot \mathrm{I} \mathrm{D}} \quad \mathrm{g}_{\mathrm{m}}=3.343 \cdot 10^{-3}$
$r_{\mathrm{s}}:=\frac{1}{\mathrm{~g}_{\mathrm{m}}} \quad \quad \mathrm{r}_{\mathrm{s}}=299.135$
$\mathrm{r}_{\text {is }}:=\frac{\mathrm{r}_{\mathrm{s}}}{(1+\chi)} \quad \mathrm{r}_{\text {is }}=299.135 \quad \begin{aligned} & \text { No body effect because the body lead is connected to the } \\ & \text { source lead. Thus } \chi=0 \text { in the equations. }\end{aligned}$
$r_{0}:=\frac{\lambda^{-1}+V_{D S}}{I_{D}} \quad \quad r_{0}=6.378 \bullet 10^{4}$
$\mathrm{v}_{\mathrm{S}}:=1 \quad$ This makes the gain equal to v_{o}.
$v_{t g}:=v_{s} \cdot \frac{R_{p}\left(R_{1}, R_{2}\right)}{R_{s}+R_{p}\left(R_{1}, R_{2}\right)} \quad v_{t g}=0.994$
$R_{t g}:=R_{p}\left(R_{s}, R_{p}\left(R_{1}, R_{2}\right)\right) \quad R_{t g}=4.97 \bullet 10^{3}$

$\mathrm{v}_{\mathrm{o}}:=\mathrm{v}_{\mathrm{tg}} \frac{\mathrm{R}_{\mathrm{p}}\left(\mathrm{r}_{0}, \mathrm{R}_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{L}}\right)\right)}{\mathrm{r}_{\text {is }}+\mathrm{R}_{\mathrm{p}}\left(\mathrm{r}_{0}, \mathrm{R}_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{L}}\right)\right)} \quad \mathrm{v}_{\mathrm{o}}=0.888 \quad$ This is the voltage gain.

$$
\begin{array}{ll}
r_{\text {out }}:=R_{p}\left(R_{S}, R_{p}\left(r_{\text {is }}, r_{0}\right)\right) & r_{\text {out }}=270.857 \\
r_{\text {in }}:=R_{p}\left(R_{1}, R_{2}\right) & r_{\text {in }}=8.333 \cdot 10^{5}
\end{array}
$$

An Alternate Solution using the Thevenin equivalent circuit looking into the source. Note that $\mathrm{R}_{\mathrm{td}}=0$ in the formulas for $\mathrm{v}_{\mathrm{soc}}$ and $\mathrm{r}_{\text {iso }}$.
$\mathrm{v}_{\text {soc }}:=\mathrm{v}_{\mathrm{tg}} \frac{\mathrm{r}_{0}}{\mathrm{r}_{\text {is }}+\mathrm{r}_{0}}$
$\mathrm{v}_{\mathrm{soc}}=0.989$
$\mathrm{r}_{\text {iso }}:=\mathrm{R}_{\mathrm{p}}\left(\mathrm{r}_{\text {is }}, \mathrm{r}_{0}\right)$
$r_{\text {iso }}=297.738$
$\mathrm{v}_{\mathrm{o}}:=\mathrm{v}_{\mathrm{soc}} \frac{\mathrm{R}_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{L}}\right)}{\left.\mathrm{r}_{\text {iso }}+\mathrm{R}_{\mathrm{p}} \mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{L}}\right)}$
$\mathrm{v}_{\mathrm{o}}=0.888$
$r_{\text {out }}:=R_{p}\left(r_{\text {iso }}, R_{S}\right)$
$r_{\text {out }}=270.857$

