Common-Source Amplifier Example - Spring 2002
$\mathrm{V}_{\text {plus }}:=24$
$\mathrm{R}_{1}:=5 \cdot 10^{6}$
$\mathrm{R}_{2}:=1 \cdot 10^{6}$
$\mathrm{R}_{\mathrm{D}}:=10 \cdot 10^{3}$
$\mathrm{R}_{\mathrm{S}}:=3 \cdot 10^{3}$
$\mathrm{R}_{3}:=50$
$R_{L}:=20 \cdot 10^{3}$
$\mathrm{R}_{\mathrm{S}}:=5 \cdot 10^{3}$
$\mathrm{K}_{0}:=0.002$
(Jaeger's notation)
$\mathrm{V}_{\mathrm{TO}}:=1.75$
$\lambda:=0.016$
$x:=0$
$R_{p}(x, y):=\frac{x \cdot y}{x+y}$

DC Bias Solution

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GG}}:=\frac{\mathrm{V}_{\text {plus }} \cdot \mathrm{R}_{2}+\mathrm{V}_{\text {minus }} \cdot \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{~V}_{\mathrm{GG}}=-16 \quad \mathrm{~V}_{\mathrm{SS}}:=\mathrm{V}_{\text {minus }} \quad \mathrm{R}_{\mathrm{SS}}:=\mathrm{R}_{\mathrm{S}} \\
& \mathrm{~V}_{1}:=\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{TO}} \quad \mathrm{~V}_{1}=6.25
\end{aligned}
$$

We will neglect the Early effect, i.e. set $\lambda=0$, to solve for the drain bias current.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}:=\frac{1}{2 \cdot \mathrm{~K}_{0} \cdot \mathrm{R}_{\mathrm{S}}^{2}} \cdot\left(\sqrt{1+2 \cdot \mathrm{~K}_{0} \cdot \mathrm{~V}_{1} \cdot \mathrm{R}_{\mathrm{S}}}-1\right)^{2} \quad \mathrm{I}_{\mathrm{D}}=1.655 \cdot 10^{-3} \\
& \mathrm{~V}_{\mathrm{D}}:=\mathrm{V}_{\mathrm{plus}}-\mathrm{I}_{\mathrm{D}} \cdot \mathrm{R}_{\mathrm{D}} \quad \mathrm{~V}_{\mathrm{D}}=7.454 \quad \mathrm{~V}_{\mathrm{S}}:=\mathrm{V}_{\text {minus }}+\mathrm{I}_{\mathrm{D}} \cdot \mathrm{R}_{\mathrm{S}} \quad \mathrm{~V}_{\mathrm{S}}=-19.036 \\
& \mathrm{~V}_{\mathrm{DS}}:=\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}} \quad \quad \mathrm{~V}_{\mathrm{DS}}=26.491 \\
& \mathrm{~V}_{\mathrm{GS}}:=\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{S}} \quad \mathrm{~V} \mathrm{~V}_{\mathrm{GS}}=3.036 \quad \mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TO}}=1.286
\end{aligned}
$$

Because $\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TO}}$, the MOSFET is in the active or saturated state.
Here is an exact solution for the drain current. Note that MathCad requires numbers for everything except the variable being solved for. The drain-source voltage in the equation is $48-\mathrm{I}_{\mathrm{D}} \cdot 13 \cdot 10^{3}$

$$
\mathrm{I}_{\mathrm{D}}=\frac{1}{4 \cdot 10^{-3} \cdot\left[1+0.016 \cdot\left(48-\mathrm{I}_{\mathrm{D}} \cdot 13 \cdot 10^{3}\right)\right] \cdot 3000^{2}} \cdot\left[\sqrt{1+4 \cdot 10^{-3} \cdot\left[1+\left[0.016 \cdot\left(48-\mathrm{I}_{\mathrm{D}} \cdot 13 \cdot 10^{3}\right)\right]\right] \cdot 6 \cdot 25 \cdot 3000}-1\right]^{2}
$$

This is the exact solution for I_{D} including the Early effect. We will use the approximate solution for the ac analysis below.
$\frac{\mathrm{I}_{\mathrm{D}}-.0017157743653358533060}{.0017157743653358533060} \cdot 100=-3.567 \begin{aligned} & \text { This is the percentage error in neglecting the Early effect in } \\ & \text { solving for the drain current. }\end{aligned}$

Now for the ac solution.

$\mathrm{r}_{\mathrm{s}}:=\frac{1}{\mathrm{~g}_{\mathrm{m}}} \quad \mathrm{r}_{\mathrm{S}}=325.758$
$\mathrm{r}_{\mathrm{s}}:=\frac{\mathrm{r}_{\mathrm{s}}}{(1+\chi)} \quad \mathrm{r}_{\mathrm{s}}=325.758$
No body effect because the body lead is connected to the source lead. This is equivalent to setting $\chi=0$ in the equations.
$\mathrm{r}_{0}:=\frac{\lambda^{-1}+\mathrm{V}_{\mathrm{DS}}}{\mathrm{I}_{\mathrm{D}}} \quad \quad \mathrm{r}_{0}=5.378 \bullet 104 \quad \mathrm{R}_{\mathrm{ts}}:=\mathrm{R}_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{3}\right) \quad \mathrm{R}_{\mathrm{ts}}=49.18$
$\mathrm{r}_{\mathrm{id}}:=\mathrm{r}_{0} \cdot\left(1+\frac{\mathrm{R}_{\mathrm{ts}}}{\mathrm{r}_{\mathrm{s}}^{\prime}}\right)+\mathrm{R}_{\text {ts }} \quad \mathrm{r}_{\mathrm{id}}=6.195 \bullet 10^{4}$
$\mathrm{v}_{\mathrm{S}}:=1 \quad$ This makes the gain equal to v_{o}.
$v_{t g}:=v_{s} \cdot \frac{R_{p}\left(R_{1}, R_{2}\right)}{R_{s}+R_{p}\left(R_{1}, R_{2}\right)} \quad v_{t g}=0.994$
$R_{t g}:=R_{p}\left(R_{s}, R_{p}\left(R_{1}, R_{2}\right)\right) \quad R_{t g}=4.97 \bullet 10^{3}$
$R_{t d}:=R_{p}\left(R_{D}, R_{L}\right)$
$R_{t d}=6.667 \bullet 10^{3}$

