ECE 3050 Analog Electronics Quiz 4

February 4, 2009

Professor Leach
Last Name:
First Name:
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
The figure shows the signal circuit of a common-emitter amplifier. It is given that $R_{s}=300 \Omega, R_{1}=20 \mathrm{k} \Omega$, $R_{2}=10 \mathrm{k} \Omega, R_{3}=200 \Omega, R_{C}=24 \mathrm{k} \Omega, R_{E}=2 \mathrm{k} \Omega, R_{4}=75 \Omega$, and $R_{L}=12 \mathrm{k} \Omega$. The BJT has the parameters and bias values $\beta=99, \alpha=0.99, r_{x}=100 \Omega, I_{C}=1.5 \mathrm{~mA}, V_{C E}=10 \mathrm{~V}, V_{A}=\infty$, and $V_{T}=0.025 \mathrm{~V}$.

$$
\begin{gathered}
r_{\pi}=\frac{V_{T}}{I_{B}} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}^{\prime}=r_{x}+r_{\pi}+(1+\beta) R_{t e} \\
r_{0}=\frac{V_{A}+V_{C E}}{I_{C}} \quad r_{e}^{\prime}=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e} \quad r_{i c}=\frac{r_{0}+r_{e}^{\prime} \| R_{t e}}{1-\alpha \frac{R_{t e}}{r_{e}^{\prime}+R_{t e}}}
\end{gathered}
$$

(a) Solve for $v_{t b} / v_{s}, R_{t b}$, and $R_{t e}$. For the values given, why is r_{0} an open circuit?
(b) Solve for the voltage gain $A_{v}=v_{o} / v_{s}$.
(c) Solve for the output resistance $r_{\text {out }}$.
(d) Solve for the input resistance $r_{i n}$.

Next page for solutions.
$\mathrm{R}_{\mathrm{S}}:=300 \quad \mathrm{R}_{1}:=20000 \quad \mathrm{R}_{2}:=10000 \quad \mathrm{R}_{3}:=200 \quad \mathrm{R}_{\mathrm{C}}:=24000 \quad \mathrm{R}_{\mathrm{E}}:=2000$
$\mathrm{R}_{4}:=75 \quad \mathrm{R}_{\mathrm{L}}:=12000 \quad \beta:=99 \quad \alpha:=0.99 \quad \mathrm{r}_{\mathrm{x}}:=100 \quad \mathrm{I}_{\mathrm{C}}:=0.0015$
$\mathrm{V}_{\mathrm{T}}:=0.025 \quad \mathrm{I}_{\mathrm{B}}:=\frac{\mathrm{I}_{\mathrm{C}}}{\beta} \quad \mathrm{I}_{\mathrm{E}}:=\frac{\mathrm{I}_{\mathrm{C}}}{\alpha} \quad \mathrm{g}_{\mathrm{m}}:=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{T}}} \quad \mathrm{r}_{\pi}:=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{B}}} \quad \mathrm{r}_{\mathrm{e}}:=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}} \quad \mathrm{v}_{\mathrm{s}}:=1$

Part (a)

$\mathrm{v}_{\mathrm{tb}}:=\mathrm{v}_{\mathrm{s}} \cdot \frac{\mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)}{\left.\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{p} 2} \mathrm{R}_{1}, \mathrm{R}_{2}\right)} \quad \mathrm{v}_{\mathrm{tb}}=0.957 \quad \mathrm{R}_{\mathrm{tb}}:=\mathrm{R}_{\mathrm{p} 3}\left(\mathrm{R}_{\mathrm{s}}, \mathrm{R}_{1}, \mathrm{R}_{2}\right)+\mathrm{R}_{3} \quad \mathrm{R}_{\mathrm{tb}}=4.871 \bullet 10^{2}$
$\mathrm{R}_{\mathrm{te}}:=\mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{\mathrm{E}}, \mathrm{R}_{4}\right) \quad \mathrm{R}_{\mathrm{te}}=72.289$
Part (b) using the simplified π model
$\mathrm{r}^{\prime}{ }_{\pi}:=\mathrm{r}_{\mathrm{x}}+\mathrm{r}_{\pi}+(1+\beta) \cdot \mathrm{R}_{\text {te }} \quad \mathrm{r}^{\prime}{ }_{\pi}=8.979 \bullet 10^{3}$
$\mathrm{i}_{\mathrm{b}}:=\frac{\mathrm{v}_{\mathrm{tb}}}{\mathrm{R}_{\mathrm{tb}}+\mathrm{r}_{\pi}^{\prime}} \quad \mathrm{i}_{\mathrm{b}}=1.011 \cdot 10^{-4} \quad \mathrm{i}^{\prime}{ }_{\mathrm{c}}:=\beta \cdot \mathrm{i}_{\mathrm{b}} \quad \mathrm{i}^{\prime}{ }_{\mathrm{c}}=1.001 \cdot 10^{-2}$
$\mathrm{v}_{\mathrm{o}}:=-\mathrm{i}^{\prime} \mathrm{c} \cdot \mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{L}}\right) \quad \mathrm{v}_{\mathrm{o}}=-80.065 \quad$ This is the voltage gain

Part (b) using the simplified T model
$\mathrm{r}_{\mathrm{e}} \mathrm{e}:=\frac{\mathrm{R}_{\mathrm{tb}}+\mathrm{r}_{\mathrm{x}}}{1+\beta}+\mathrm{r}_{\mathrm{e}} \quad \mathrm{r}^{\prime} \mathrm{e}=22.371$
$\mathrm{i}^{\prime} \mathrm{e}:=\frac{\mathrm{v}_{\mathrm{tb}}}{\mathrm{r}^{\prime} \mathrm{e}+\mathrm{R}_{\text {te }}} \quad \mathrm{i}^{\prime} \mathrm{e}=1.011 \cdot 10^{-2} \quad \mathrm{i}^{\prime} \mathrm{c}:=\alpha \cdot \mathrm{i}^{\prime} \mathrm{e} \quad \mathrm{i}^{\prime} \mathrm{c}=1.001 \cdot 10^{-2}$
$\mathrm{v}_{\mathrm{o}}:=-\mathrm{i}^{\prime} \mathrm{c} \cdot \mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{L}}\right) \quad \mathrm{v}_{\mathrm{o}}=-80.065 \quad$ This is the voltage gain
Part (c)
$\mathrm{r}_{\text {out }}:=\mathrm{R}_{\mathrm{C}} \quad \mathrm{r}_{\text {out }}=2.4 \bullet 10^{4}$

Part (d)
$\mathrm{r}_{\mathrm{ib}}:=\mathrm{r}^{\prime} \pi \quad \mathrm{r}_{\mathrm{in}}:=\mathrm{R}_{\mathrm{p} 3}\left(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}+\mathrm{r}_{\mathrm{ib}}\right) \quad \mathrm{r}_{\text {in }}=3.862^{\circ} 10^{3}$

