ECE 3050 Analog Electronics Quiz 5

February 11, 2009

Professor Leach
Last Name: \qquad First Name:
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials
For the transistors in this problem, assume the parameters $\beta=100, g_{m}=1 / 25 \mathrm{~S}, r_{x}=0, r_{\pi}=2.5 \mathrm{k} \Omega, r_{e}=24.75 \Omega$, and $r_{0}=\infty$ (an open circuit).

$$
\begin{gathered}
r_{\pi}=\frac{V_{T}}{I_{B}} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}^{\prime}=r_{x}+r_{\pi}+(1+\beta) R_{t e} \\
r_{0}=\frac{V_{A}+V_{C E}}{I_{C}} \quad r_{e}^{\prime}=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e} \quad r_{i c}=\frac{r_{0}+r_{e}^{\prime} \| R_{t e}}{1-\alpha \frac{R_{t e}}{r_{e}^{\prime}+R_{t e}}}
\end{gathered}
$$

(a) The figure on the left shows the signal circuit of a CE amplifier. It is given that $R_{S}=1 \mathrm{k} \Omega, R_{1}=10 \mathrm{k} \Omega$, $R_{2}=3 \mathrm{k} \Omega$, and $R_{3}=75 \Omega$. Solve for the small-signal Thévenin equivalent circuit seen looking into its output terminal. The circuit should be in the form of a voltage source $A_{1} v_{s}$ in series with a resistor $r_{\text {out }}$, where you must give numerical values for A_{1} and $r_{\text {out }}$.
(b) A load resistor $R_{L}=300 \Omega$ is connected from the output to ground. Use the Thévenin equivalent circuit found in part (a) to solve for the new value of v_{o}.
(c) The figure on the right shows the signal circuit of the CE amplifier with a CC stage added between the CE stage and the 300Ω load resistor. If $R_{4}=2 \mathrm{k} \Omega$, solve for the new value of v_{o}.
(d) Why does the voltage gain increase with the addition of a CC stage which has a voltage gain by itself that is less than unity?

Over for solutions.

Quiz 5

$\mathrm{R}_{\mathrm{S}}:=1000$
$\mathrm{R}_{1}:=10000$
$\mathrm{R}_{2}:=3000$
$\mathrm{R}_{3}:=75$
$\mathrm{R}_{4}:=2000$
$\mathrm{R}_{\mathrm{L}}:=300$
$\beta:=100 \quad \mathrm{~g}_{\mathrm{m}}:=\frac{1}{25} \quad \mathrm{r}_{\pi}:=2500 \quad \mathrm{r}_{\mathrm{e}}:=24.75 \quad \mathrm{v}_{\mathrm{s}}:=1$

Part (a)
First Solution:
$r_{\pi}^{\prime}:=r_{\pi}+(1+\beta) \cdot R_{3} \quad r^{\prime}{ }_{\pi}=1.008 \cdot 104 \quad v_{\text {tb } 1}:=v_{s} \cdot \frac{R_{1}}{R_{S}+R_{1}} \quad v_{\text {tb } 1}=0.909$
$\mathrm{R}_{\mathrm{tb} 1}:=\mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{1}\right) \quad \mathrm{R}_{\mathrm{tb} 1}=9.091 \cdot 10^{2} \quad \mathrm{i}_{\mathrm{b} 1}:=\frac{\mathrm{v}_{\mathrm{tb} 1}}{\mathrm{R}_{\mathrm{tb} 1}+\mathrm{r}^{\prime} \pi} \quad \mathrm{i}_{\mathrm{b} 1}=8.276 \cdot 10^{-5}$
$\mathrm{i}^{\prime} \mathrm{c} 1:=\beta \cdot \mathrm{i}_{\mathrm{b} 1} \quad \mathrm{i}^{\prime}{ }_{\mathrm{c} 1}=8.276 \cdot 10^{-3} \quad \mathrm{v}_{\mathrm{o} 1}:=-\mathrm{i}^{\prime}{ }_{\mathrm{c} 1} \cdot \mathrm{R}_{2} \quad \mathrm{v}_{\mathrm{o} 1}=-24.829$
$\mathrm{r}_{\text {out }}:=\mathrm{R}_{2} \quad \mathrm{r}_{\text {out }}=3 \bullet 10^{3}$
Second Solution:
$r^{\prime}{ }_{e 1}:=\frac{\mathrm{R}_{\mathrm{tb} 1}}{1+\beta}+\mathrm{r}_{\mathrm{e}} \quad \mathrm{r}^{\prime}{ }_{\mathrm{e} 1}=33.751 \quad \quad \mathrm{i}^{\prime}{ }_{\mathrm{e} 1}:=\frac{\mathrm{v}_{\mathrm{tb} 1}}{\mathrm{r}^{\prime}{ }_{\mathrm{e} 1}+\mathrm{R}_{3}} \quad \mathrm{i}^{\prime}{ }_{\mathrm{e} 1}=8.3590^{10} 10^{-3}$
$\mathrm{i}^{\prime} \mathrm{c} 1:=\frac{\beta}{1+\beta} \cdot \mathrm{i}^{\prime}$ e1 $\quad \mathrm{i}^{\prime}{ }_{\mathrm{c} 1}=8.277 \cdot 10^{-3} \quad \mathrm{v}_{\mathrm{o} 1}:=-\mathrm{i}^{\prime} \mathrm{c} 1 \cdot \mathrm{R}_{2} \quad \mathrm{v}_{\mathrm{o} 1}=-24.83$

Part (b)

$\mathrm{v}_{\mathrm{o} 2}:=\mathrm{v}_{\mathrm{o} 1} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{r}_{\text {out }}+\mathrm{R}_{\mathrm{L}}} \quad \mathrm{v}_{\mathrm{o} 2}=-2.257$

Part (c)
$r_{e 2}:=\frac{r_{\text {out }}}{1+\beta}+r_{e} \quad r_{e 2}=54.453 \quad v_{o 3}:=v_{o 1} \frac{R_{p 2}\left(R_{4}, R_{L}\right)}{r_{e 2}+R_{p 2}\left(R_{4}, R_{L}\right)} \quad v_{o 3}=-20.542$

Part (d)

Because the CC stage has a much lower loutput resistance than the CE stage.

