ECE 3050 Analog Electronics Quiz 6

February 18, 2009
Professor Leach
Name
Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials \qquad

1. The figure shows a BJT diff amp. It is given that $V^{+}=+24 \mathrm{~V}, V^{-}=-24 \mathrm{~V}, R_{B}=150 \Omega, R_{E}=75 \Omega$, $R_{C}=24 \mathrm{k} \Omega, R_{Q}=23 \mathrm{k} \Omega, V_{T}=0.025 \mathrm{~V}, V_{A}=\infty, V_{B E}=0.65 \mathrm{~V}, \beta=74, I_{E}=0.5 \mathrm{~mA}, r_{e}=50 \Omega$, $r_{x}=30 \Omega$, and $r_{e}^{\prime}=52.4 \Omega$.

$$
\begin{gathered}
r_{e}=\frac{V_{T}}{I_{E}}=50 \Omega \quad r_{e}^{\prime}=\frac{R_{B}+r_{x}}{1+\beta}+r_{e}=52.4 \Omega \quad g_{m}=\frac{I_{C}}{V_{T}}=0.01973 \mathrm{~S} \quad r_{\pi}=\frac{V_{T}}{I_{B}}=3.75 \mathrm{k} \Omega \\
r_{\pi}^{\prime}=r_{x}+r_{\pi}+(1+\beta) R_{t e} \quad r_{0}=\frac{V_{A}+V_{C E}}{I_{C}}=\infty \quad r_{i c}=\frac{r_{0}+r_{e}^{\prime} \| R_{t e}}{1-\alpha \frac{R_{t e}}{r_{e}^{\prime}+R_{t e}}}=\infty
\end{gathered}
$$

Before starting the problem, note that the answers for some of the numerical calculations are given with the above formulas.
(a) For $v_{i 2}=0$, solve for the small-signal Thévenin resistance $R_{t e 1}$ looking out of the emitter of Q_{1}.
(b) For $v_{i 2}=0$, solve for the small-signal voltage gain $v_{o 1} / v_{i 1}$.
(c) For $v_{i 1}=0$, solve for the small-signal voltage gain $v_{o 1} / v_{i 2}$. If you are clever, it is possible to make use of the solution for $v_{o 1} / v_{i 1}$ to simplify the numerical calculations.
(d) Make use of the solutions from the parts above to write the solutions for the small-signal gains $v_{o 2} / v_{i 2}$ and $v_{o 2} / v_{i 1}$.

$$
A_{v 11}:=\frac{\alpha}{\mathrm{r}_{\mathrm{e}}^{\prime}+\mathrm{R}_{\mathrm{te}}} \cdot\left(-\mathrm{R}_{\mathrm{C}}\right) \quad \mathrm{A}_{\mathrm{v} 11}=-93.193
$$

$$
A_{\mathrm{v} 12}:=-\mathrm{A}_{\mathrm{v} 11} \frac{\mathrm{R}_{\mathrm{Q}}}{\mathrm{R}_{\mathrm{Q}}+\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}} \quad \mathrm{~A}_{\mathrm{v} 12}=92.679
$$

$$
A_{\mathrm{v} 22}:=\mathrm{A}_{\mathrm{v} 11} \quad \mathrm{~A}_{\mathrm{v} 22}=-93.193 \quad \mathrm{~A}_{\mathrm{v} 21}:=\mathrm{A}_{\mathrm{v} 12} \quad \mathrm{~A}_{\mathrm{v} 21}=92.679
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T}}:=0.025 \quad \mathrm{r}_{\mathrm{x}}:=30 \quad \mathrm{~V}_{\mathrm{p}}:=24 \quad \mathrm{R}_{\mathrm{C}}:=24000 \quad \beta:=74 \quad \alpha:=\frac{\beta}{1+\beta} \quad \alpha=0.987 \\
& \mathrm{~V}_{\mathrm{n}}:=-24 \quad \mathrm{R}_{\mathrm{B}}:=150 \quad \mathrm{R}_{\mathrm{E}}:=75 \quad \mathrm{R}_{\mathrm{Q}}:=23000 \quad \mathrm{~V}_{\mathrm{BE}}:=0.65 \\
& I_{E}:=\frac{0-V_{B E^{-}}\left(\mathrm{V}_{\mathrm{n}}\right)}{\frac{\mathrm{R}_{\mathrm{B}}}{\beta}+\frac{\left(\mathrm{R}_{\mathrm{E}}+2 \cdot \mathrm{R}_{\mathrm{Q}}\right)}{\alpha}} \quad \mathrm{I}_{\mathrm{E}}=5 \cdot 10^{-4} \quad \mathrm{~V}_{\mathrm{C}}:=\mathrm{V}_{\mathrm{p}}-\alpha \cdot \mathrm{I}_{\mathrm{E}} \cdot \mathrm{R}_{\mathrm{C}} \quad \mathrm{~V}_{\mathrm{C}}=12.16 \\
& r_{e}:=\frac{V_{T}}{I_{E}} \quad r_{e}=50 \quad r^{\prime}{ }_{e}:=\frac{R_{B}+r_{x}}{1+\beta}+r_{e} \quad r^{\prime}{ }_{e}=52.4 \\
& \mathrm{I}_{\mathrm{B}}:=\frac{\alpha \cdot \mathrm{I}_{\mathrm{E}}}{\beta} \quad \mathrm{r}_{\pi}:=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{B}}} \quad \mathrm{r}_{\pi}=3.75 \cdot 10^{3} \quad \mathrm{I}_{\mathrm{C}}:=\alpha \cdot \mathrm{I}_{\mathrm{E}} \quad \mathrm{~g}_{\mathrm{m}}:=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{T}}} \quad \mathrm{~g}_{\mathrm{m}}=1.973 \cdot 10^{-2} \\
& \mathrm{~g}_{\mathrm{m}}^{-1}=50.675 \quad \mathrm{R}_{\mathrm{te}}:=\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{p} 2}\left(\mathrm{R}_{\mathrm{Q}}, \mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{e}}\right) \quad \mathrm{R}_{\mathrm{te}}=2.017 \cdot 10^{2}
\end{aligned}
$$

