ECE 3050 Analog Electronics Quiz 8

March 4, 2009
Professor Leach
Name
Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials

The figure shows a cascode amplifier. M_{1} is operated as a CS amplifier with a small-signal voltage v_{s} and a dc bias voltage $V_{B 1}$ applied to its gate. M_{2} is operated as a CG amplifier with a dc bias voltage $V_{B 2}$ applied to its gate. M_{3} and M_{4} form a current mirror with an input dc current $I_{R E F}$. For each MOSFET, it is given that $g_{m}=1 / 200, g_{m b}=1 / 400$, and $r_{0}=50 \mathrm{k} \Omega$. Solve for $i_{o(s c)}$ and $v_{o(o c)}$. To simplify the solution, assume $r_{01}=r_{02}=\infty$ when solving for $i_{o(s c)}$. Then assume $r_{01}=r_{02}=50 \mathrm{k} \Omega$ when using $i_{o(s c)}$ to calculate $v_{o(o c)}$.

$$
\chi=\frac{g_{m b}}{g_{m}} \quad r_{s}^{\prime}=\frac{1}{g_{m}+g_{m b}}=\frac{1}{g_{m}(1+\chi)} \quad r_{i d}=r_{0}\left(1+\frac{R_{t s}}{r_{s}^{\prime}}\right)+R_{t s}
$$

$\mathrm{g}_{\mathrm{m}}:=\frac{1}{200} \quad \mathrm{~g}_{\mathrm{mb}}:=\frac{1}{400} \quad \chi:=\frac{\mathrm{g}_{\mathrm{mb}}}{\mathrm{g}_{\mathrm{m}}} \quad \chi=0.5 \quad \mathrm{r}_{0}:=50000 \quad \quad \mathrm{v}_{\mathrm{s}}:=1$
$\mathrm{i}^{\prime} \mathrm{d} 1:=\mathrm{g}_{\mathrm{m}} \cdot \mathrm{v}_{\mathrm{s}} \quad \mathrm{i}^{\prime} \mathrm{d} 2:=\mathrm{i}^{\prime} \mathrm{d} 1 \quad \mathrm{i}_{\mathrm{sc}}:=\mathrm{i}^{\prime} \mathrm{d} 2 \quad \mathrm{i}_{\mathrm{sc}}=5 \cdot 10^{-3}$
$r_{s 2}^{\prime}:=\frac{1}{g_{\mathrm{m}} \cdot(1+\chi)} \quad \mathrm{r}_{\mathrm{s} 2}=1.333 \bullet 10^{2} \quad \mathrm{R}_{\mathrm{ts} 2}:=\mathrm{r}_{0} \quad \mathrm{r}_{\mathrm{id} 2}:=\mathrm{r}_{0} \cdot\left(1+\frac{\mathrm{R}_{\mathrm{ts} 2}}{\mathrm{r}_{\mathrm{s} 2}}\right)+\mathrm{r}_{0}$
$\mathrm{r}_{\mathrm{id} 2}=1.885 \cdot 10^{7} \quad \mathrm{v}_{\mathrm{oc}}:=-\mathrm{i}_{\mathrm{sc}} \cdot \mathrm{R}_{\mathrm{p} 2}\left(\mathrm{r}_{0}, \mathrm{r}_{\mathrm{id} 2}\right) \quad \mathrm{v}_{\mathrm{oc}}=-2.493 \cdot 10^{2}$

Answers are $\mathrm{i}_{\mathrm{Sc}} / \mathrm{v}_{\mathrm{s}}$ and $\mathrm{v}_{\mathrm{oc}} / \mathrm{v}_{\mathrm{s}}$.

