ECE 3050 Analog Electronics Quiz 9

March 11, 2009
Professor Leach
Name
Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials \qquad

1. A $V_{B E}$ multiplier circuit is shown. One of the BJT's is connected as a diode. If $\beta=\infty$ and $V_{B E}=$ 0.65 V for each BJT and $I=3 \mathrm{~mA}$, solve for R_{1} and R_{2} for $V=3.5 \mathrm{~V}$ and $I_{1}=0.85 I$.

$\mathrm{V}_{\mathrm{BE}}:=0.65 \quad \mathrm{I}:=0.003 \quad \mathrm{~V}:=3.5 \quad \mathrm{I}_{1}:=0.85 \cdot \mathrm{I}$
$\mathrm{R}_{1}:=\frac{2 \cdot \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{1}}$
$R_{1}=5.09810^{2}$
$\mathrm{R}_{2}:=\frac{\mathrm{V}-2 \cdot \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{1}}$
$\mathrm{R}_{2}=8.62710^{2}$
2. A current source is shown. For the JFET, $I_{D}=\beta_{F E T}\left(V_{G S}-V_{T O}\right)^{2}$, where $\beta_{F E T}=0.3 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{T O}=-4 \mathrm{~V}$. For the Zener diode, $V_{Z}=4.7 \mathrm{~V}$. For the BJT, $\beta_{B J T}=99$ and $V_{B E}=0.65 \mathrm{~V}$.
(a) Solve for the current through the Zener diode if $I_{O}=2 \mathrm{~mA}$..
(b) Solve for the value of R_{E} for $I_{O}=2 \mathrm{~mA}$.

$$
\begin{aligned}
& \beta_{\mathrm{FET}}:=0.0003 \quad \mathrm{~V}_{\mathrm{TO}}:=-4 \quad \mathrm{~V}_{\mathrm{Z}}:=4.7 \quad \beta_{\mathrm{BJT}}:=99 \quad \mathrm{~V}_{\mathrm{BE}}:=0.65 \quad \mathrm{I}_{\mathrm{O}}:=0.002 \\
& \alpha_{\mathrm{BJT}}:=\frac{\beta \mathrm{BJT}^{1+\beta}}{1+\beta_{\mathrm{BJT}}} \quad \mathrm{I}_{\mathrm{Z}}:=\beta{ }_{\mathrm{FET}} \cdot \mathrm{~V}_{\mathrm{TO}}{ }^{2}-\frac{\mathrm{I}_{\mathrm{O}}}{\beta_{\mathrm{BJT}}} \quad \quad \mathrm{I}_{\mathrm{Z}}=4.78 \cdot 10^{-3} \\
& \mathrm{R}_{\mathrm{E}}:=\frac{\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{BE}}}{\frac{\mathrm{I}_{\mathrm{O}}}{\alpha_{\mathrm{BJT}}}} \quad \mathrm{R}_{\mathrm{E}}=2.005 \cdot 10^{3}
\end{aligned}
$$

