ECE 3050 Analog Electronics Quiz 9

March 11, 2009

Professor Leach Name______ Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials ______

1. A V_{BE} multiplier circuit is shown. One of the BJT's is connected as a diode. If $\beta = \infty$ and $V_{BE} = 0.65$ V for each BJT and I = 3 mA, solve for R_1 and R_2 for V = 3.5 V and $I_1 = 0.85I$.

2. A current source is shown. For the JFET, I_D = β_{FET} (V_{GS} - V_{TO})², where β_{FET} = 0.3 mA/V² and V_{TO} = -4V. For the Zener diode, V_Z = 4.7V. For the BJT, β_{BJT} = 99 and V_{BE} = 0.65 V. (a) Solve for the current through the Zener diode if I_O = 2 mA.. (b) Solve for the value of R_E for I_O = 2 mA.

$$\beta_{\text{FET}} := 0.0003 \quad V_{\text{TO}} := -4 \quad V_Z := 4.7 \qquad \beta_{\text{BJT}} := 99 \quad V_{\text{BE}} := 0.65 \qquad I_O := 0.002$$

$$\alpha_{\text{BJT}} := \frac{\beta_{\text{BJT}}}{1 + \beta_{\text{BJT}}} \qquad I_Z := \beta_{\text{FET}} V_{\text{TO}}^2 - \frac{I_O}{\beta_{\text{BJT}}} \qquad I_Z = 4.78 \cdot 10^{-3}$$

$$R_E := \frac{V_Z - V_{\text{BE}}}{\frac{I_O}{\alpha_{\text{BJT}}}} \qquad R_E = 2.005 \cdot 10^3$$