ECE 3050 Analog Electronics Quiz 10

March 25, 2009
Professor Leach
Name
Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials \qquad

1. The figure shows an op amp circuit. It is given that $R_{1}=20 \mathrm{k} \Omega, R_{2}=4 \mathrm{k} \Omega, R_{3}=6 \mathrm{k} \Omega, R_{4}=3 \mathrm{k} \Omega$, $R_{F 1}=180 \mathrm{k} \Omega, R_{F 2}=30 \mathrm{k} \Omega$.
(a) Solve for $v_{O 1}$ as a function of $v_{I 1}$.
(b) Solve for $v_{O 2}$ as a function of $v_{I 1}$ and $v_{I 2}$.

$$
\begin{array}{lll}
\mathrm{R}_{1}:=20000 & \mathrm{R}_{2}:=4000 & \mathrm{R}_{3}:=6000 \quad \mathrm{R}_{4}:=3000 \quad \mathrm{R}_{\mathrm{F} 1}:=180000 \quad \mathrm{R}_{\mathrm{F} 2}:=30000 \\
\mathrm{~A}_{11}:=\frac{-\mathrm{R}_{\mathrm{F} 1}}{\mathrm{R}_{1}} & \mathrm{~A}_{11}=-9 & \mathrm{~A}_{12}:=\mathrm{A}_{11} \cdot \frac{\mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}} \cdot\left(1+\frac{\mathrm{R}_{\mathrm{F} 2}}{\mathrm{R}_{4}}\right) \quad \mathrm{A}_{12}=-59.4 \\
\mathrm{~A}_{22}:=\frac{-\mathrm{R}_{\mathrm{F} 2}}{\mathrm{R}_{4}} & \mathrm{~A}_{22}=-10 & \mathrm{v}_{\mathrm{O} 1}=\mathrm{A}_{11} \cdot{ }^{\mathrm{v}} \mathrm{I} 1 \quad \mathrm{v}_{\mathrm{O} 2}=\mathrm{A}_{12} \cdot \mathrm{v}_{\mathrm{I} 1}+\mathrm{A}_{22} \cdot \mathrm{v}_{\mathrm{I} 2}
\end{array}
$$

2. The figure shows an op amp circuit. It is given that $R_{1}=R_{2}=10 \mathrm{k} \Omega, R_{3}=R_{4}=40 \mathrm{k} \Omega$ and $v_{I}=2 \mathrm{~V}$.
(a) Solve for i_{1}.
(b) Solve for $v_{O 1}$.
(c) Solve for R_{5} such that $v_{O 2}=-v_{O 1}$.

$$
\begin{aligned}
& \mathrm{R}_{1}:=10000 \quad \mathrm{R}_{2}:=10000 \quad \mathrm{R}_{3}:=40000 \quad \mathrm{R}_{4}:=40000 \quad \mathrm{v}_{\mathrm{I}}:=2 \\
& \mathrm{i}_{1}:=\frac{\mathrm{v}_{\mathrm{I}}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{i}_{1}=1 \cdot 10^{-4} \quad \mathrm{v}_{\mathrm{O} 1}:=\mathrm{i}_{1} \cdot\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \quad \mathrm{v}_{\mathrm{O} 1}=8
\end{aligned}
$$

$\mathrm{v}_{\mathrm{O} 2}:=-\mathrm{v}_{\mathrm{O} 1} \quad \mathrm{R}_{5}:=\frac{-\mathrm{v}_{\mathrm{O} 2}}{\mathrm{i}_{1}} \quad \mathrm{R}_{5}=8 \cdot 10^{4}$

