ECE 3050 Analog Electronics Quiz 11

April 1, 2009

Professor Leach Name______ Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials ______

1 of 2. The figure shows a three op amp instrumentation amplifier. It is given that $v_{I1} = 1.5 \text{ V}$, $v_{I2} = -2 \text{ V}$, $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, $R_5 = 5 \text{ k}\Omega$, $R_6 = 6 \text{ k}\Omega$, and $R_7 = 7 \text{ k}\Omega$. Solve for the node voltages v_A through v_F and the output voltage v_O .

2 of 2. (a) A circuit has the differential equation $\ddot{v}_O + 3\dot{v}_O + 4v_O = 8v_I$, where each dot indicates a time derivative. Solve for the transfer function for V_o/V_i .

$$s^{2}V_{o} + 3sV_{o} + 4V_{o} = 8V_{i} \Longrightarrow \frac{V_{o}}{V_{i}} = \frac{4}{s^{2} + 3s + 4} = \frac{1}{\left(s/2\right)^{2} + \left(3/2\right)\left(s/2\right) + 1}$$

(b) Sketch and label the Bode magnitude and phase plots for the transfer function

$$T(s) = \frac{K}{(1 + s/\omega_0)(1 + s/r\omega_0)}$$

where r is a number such that $r\omega_0 \gg \omega_0$.

Magnitude: Starts at K at zero frequency, breaks to -1 dec/dec at $\omega = \omega_0$, and breaks to -2 dec/dec at $\omega = r\omega_0$.

Phase: Starts at 0°, approaches -90° between ω_0 and $r\omega_0$, and approaches -180° well above $r\omega_0$.