ECE 3050 Analog Electronics Quiz 11

April 1, 2009
Professor Leach
Name
Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials \qquad
1 of 2 . The figure shows a three op amp instrumentation amplifier. It is given that $v_{I 1}=1.5 \mathrm{~V}, v_{I 2}=-2 \mathrm{~V}$, $R_{1}=1 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega, R_{3}=3 \mathrm{k} \Omega, R_{4}=4 \mathrm{k} \Omega, R_{5}=5 \mathrm{k} \Omega, R_{6}=6 \mathrm{k} \Omega$, and $R_{7}=7 \mathrm{k} \Omega$. Solve for the node voltages v_{A} through v_{F} and the output voltage v_{O}.

$\mathrm{v}_{\mathrm{I} 1}:=1.5 \quad \mathrm{v}_{\mathrm{I} 2}:=-2 \quad \mathrm{R}_{1}:=1000 \quad \mathrm{R}_{2}:=2000 \quad \mathrm{R}_{3}:=3000 \quad \mathrm{R}_{4}:=4000$
$\mathrm{R}_{5}:=5000 \quad \mathrm{R}_{6}:=6000 \quad \mathrm{R}_{7}:=7000$
$\mathrm{v}_{\mathrm{A}}:=\left(1+\frac{\mathrm{R}_{3}}{\mathrm{R}_{1}}\right) \cdot{ }^{\mathrm{v}}{ }_{\mathrm{I} 1}-\mathrm{v}_{\mathrm{I} 2} \cdot \frac{\mathrm{R}_{3}}{\mathrm{R}_{1}} \quad \mathrm{v}_{\mathrm{A}}=12 \quad \quad \mathrm{v}_{\mathrm{B}}:=\mathrm{v}_{\mathrm{I} 1} \quad \mathrm{v}_{\mathrm{B}}=1.5$
${ }^{v_{C}}:=-v_{I 1} \cdot \frac{R_{2}}{R_{1}}+\left(1+\frac{R_{2}}{\mathrm{R}_{1}}\right) \cdot{ }^{\mathrm{v}} \mathrm{I}_{2} \quad \quad \mathrm{v}_{\mathrm{C}}=-9 \quad \quad \mathrm{v}_{\mathrm{E}}:=\mathrm{v}_{\mathrm{A}} \cdot \frac{\mathrm{R}_{7}}{\mathrm{R}_{5}+\mathrm{R}_{7}} \quad{ }^{\mathrm{v}_{\mathrm{E}}}=7$
$v_{F}:=v_{E} \quad v_{F}=7$
$v_{O}:=v_{E} \cdot\left(1+\frac{R_{6}}{R_{4}}\right)-v_{C} \cdot \frac{R_{6}}{R_{4}} \quad v_{O}=31$
2 of 2. (a) A circuit has the differential equation $\ddot{v}_{O}+3 \dot{v}_{O}+4 v_{O}=8 v_{I}$, where each dot indicates a time derivative. Solve for the transfer function for V_{o} / V_{i}.

$$
s^{2} V_{o}+3 s V_{o}+4 V_{o}=8 V_{i} \Longrightarrow \frac{V_{o}}{V_{i}}=\frac{4}{s^{2}+3 s+4}=\frac{1}{(s / 2)^{2}+(3 / 2)(s / 2)+1}
$$

(b) Sketch and label the Bode magnitude and phase plots for the transfer function

$$
T(s)=\frac{K}{\left(1+s / \omega_{0}\right)\left(1+s / r \omega_{0}\right)}
$$

where r is a number such that $r \omega_{0} \gg \omega_{0}$.
Magnitude: Starts at K at zero frequency, breaks to $-1 \mathrm{dec} / \mathrm{dec}$ at $\omega=\omega_{0}$, and breaks to $-2 \mathrm{dec} / \mathrm{dec}$ at $\omega=r \omega_{0}$.
Phase: Starts at 0°, approaches -90° between ω_{0} and $r \omega_{0}$, and approaches -180° well above $r \omega_{0}$.

