ECE 3050 Analog Electronics Quiz 14 April 22, 2009

pm 22, 2008

Professor Leach Name______ Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials ______

1 of 2. The figure shows a precision rectifier circuit. The input signal is a sine wave. For $R_1 = 10 \,\mathrm{k\Omega}$, $R_2 = 10 \,\mathrm{k\Omega}$, $R_3 = 5 \,\mathrm{k\Omega}$, $R_4 = 10 \,\mathrm{k\Omega}$, and $R_5 = 20 \,\mathrm{k\Omega}$, sketch the time domain waveforms for the v_1 and the v_O nodes.

The output signal is a negative going full wave rectified sine wave with a peak voltage of $2v_I$.

2 of 2. $R_S = 1 \text{ k}\Omega$, $R_1 = R_2 = 30 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, and $R_4 = 1 \text{ k}\Omega$, $C_1 = 1 \mu\text{F}$, and $C_2 = 50 \mu\text{F}$. The impedances seen looking into the base and into the emitter are

$$z_{ib} = 10^4 \frac{1 + s/100}{1 + s/10} \qquad z_{ie} = 500 \frac{1 + s/20}{1 + s/2}$$

- (a) For the lower cutoff frequency, solve for the worse case pole frequency for C_1 .
- (b) For the lower cutoff frequency, solve for the worse case pole frequency for C_2 .
- (c) Which pole dominates in calculating the lower cutoff frequency f_L ?

R _S := 1000	R ₁ := 30000	R ₂ := 3	80000	R ₃ := 3000	$R_4 := 1000$
r _{ib} := 1000	r _{ie} := 50	worst case	values w	hich are the	high frequency limits
$C_1 := 1 \cdot 10^{-6}$	C ₂ := 50·10) ⁻⁶			
$\tau_1 := (R_S + R_1)$	$p_3(R_1, R_2, r_i)$	$\left(\right) \left(\cdot \mathbf{C}_{1} \right)$	$\frac{1}{2 \cdot \pi \cdot \tau_{1}} =$	82.144	this frequency dominates because it is the highest
$\tau_2 := \left(R_{p2} \left(r_{ie} \right) \right)$	$(\mathbf{R}_3) + \mathbf{R}_4 \cdot \mathbf{C}$	2	$\frac{1}{2 \cdot \pi \cdot \tau} =$	3.034	