$\mathrm{R}_{\mathrm{P}}(\mathrm{x}, \mathrm{y}):=\frac{\mathrm{x} \cdot \mathrm{y}}{\mathrm{x}+\mathrm{y}} \quad \quad$ Function for calculating parallel resistors.
$\begin{array}{llllll}\mathrm{R}_{1}:=100000 & \mathrm{R}_{2}:=120000 & \mathrm{R}_{\mathrm{C}}:=0 & \mathrm{R}_{\mathrm{E}}:=5600 & \mathrm{R}_{\mathrm{S}}:=5000 & \mathrm{R}_{\mathrm{L}}:=10000 \\ \mathrm{~V}_{\mathrm{p}}:=15 & \mathrm{~V}_{\mathrm{m}}:=-15 & \mathrm{~V}_{\mathrm{BE}}:=0.65 & \mathrm{~V}_{\mathrm{T}}:=0.025 & \beta:=99 & \alpha:=0.99 \\ \mathrm{r}_{\mathrm{x}}:=20 & \mathrm{r}_{0}:=50000 & \\ \mathrm{v}_{\mathrm{S}}:=1 & \text { With } \mathrm{v}_{\mathrm{S}}=0, \text { the voltage gain is equal to } \mathrm{v}_{\mathrm{o}} .\end{array}$

DC Bias Solution
$\mathrm{V}_{\mathrm{BB}}:=\frac{\mathrm{V}_{\mathrm{p}} \cdot \mathrm{R}_{2}+\mathrm{V}_{\mathrm{m}} \cdot \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{~V}_{\mathrm{BB}}=1.364$
$\mathrm{R}_{\mathrm{BB}}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right) \quad \mathrm{R}_{\mathrm{BB}}=5.455 \cdot 10^{4}$
$I_{E}:=\frac{V_{B B}-V_{B E}-V_{m}}{\frac{R_{B B}}{1+\beta}+R_{E}} \quad I_{E}=2.557 \cdot 10^{-3}$

$$
\mathrm{r}_{\mathrm{e}}:=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}} \quad \mathrm{r}_{\mathrm{e}}=9.777
$$

AC Solutions

This first solution uses the equations involving R_{tc}, even though $\mathrm{R}_{\mathrm{tc}}=0$. It is based on the Thevenin emitter circuit which have $\mathrm{v}_{\text {eoc }}$ in series with $\mathrm{r}_{\text {ieo }}$.
$\mathrm{v}_{\mathrm{tb}}:=\mathrm{v}_{\mathrm{s}} \frac{\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)}{\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)} \quad \mathrm{v}_{\mathrm{tb}}=0.916$
$\mathrm{R}_{\mathrm{tb}}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)\right) \quad \mathrm{R}_{\mathrm{tb}}=4.58 \bullet 10^{3}$
$\mathrm{R}_{\mathrm{te}}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\mathrm{E}}, \mathrm{R}_{\mathrm{L}}\right) \quad \mathrm{R}_{\mathrm{te}}=3.59 \bullet 10^{3}$
$r_{i e}:=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e} \quad r_{i e}=55.779$
$\mathrm{R}_{\text {tc }}:=\mathrm{R}_{\mathrm{C}} \quad \mathrm{R}_{\text {tc }}=0$
$v_{\text {eoc }}:=v_{t b} \cdot \frac{r_{0}+\frac{R_{t c}}{1+\beta}}{r_{i e}+r_{0}+\frac{R_{t c}}{1+\beta}}$
$\mathrm{v}_{\text {eoc }}=0.915$
$\mathrm{r}_{\mathrm{ieo}}:=\mathrm{r}_{\mathrm{ie}} \frac{\mathrm{r}_{0}+\mathrm{R}_{\mathrm{tc}}}{\mathrm{r}_{\mathrm{ie}}+\mathrm{r}_{0}+\frac{\mathrm{R}_{\mathrm{tc}}}{1+\beta}} \quad \quad \mathrm{r}_{\mathrm{ieo}}=55.717$
$v_{o}:=v_{e o c} \cdot \frac{R_{P}\left(R_{E}, R_{L}\right)}{r_{\text {ieo }}+R_{P}\left(R_{E}, R_{L}\right)} \quad v_{o}=0.901$
This is the voltage gain.
$r_{\text {out }}:=R_{P}\left(R_{E}, r_{\text {ieo }}\right) \quad r_{\text {out }}=55.168$

$$
\begin{aligned}
& r_{\text {out }}:=R_{P}\left(r_{\text {ieo }}, R_{E}\right) \quad r_{\text {out }}=55.168 \\
& r_{\text {ib }}:=r_{x}+(1+\beta) \cdot\left(r_{e}+R_{P}\left(R_{\text {te }}, R_{\text {tc }}+r_{0}\right)\right)-\frac{\beta \cdot R_{t c} \cdot R_{\text {te }}}{R_{\text {tc }}+r_{0}+R_{\text {te }}} \\
& r_{\text {ib }}=3.359 \bullet 10 \\
& r_{\text {in }}:=R_{P}\left(r_{i b}, R_{P}\left(R_{1}, R_{2}\right)\right) \quad r_{\text {in }}=4.693 \cdot 10^{4}
\end{aligned}
$$

The following solution is based on the emitter equivalent circuit. It is the preferred solution when $\mathrm{R}_{\mathrm{tc}}=0$. Note that this is an exact solution, where r_{0} is considered to be an external resistor. The answers are the same as the ones in the solution above.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{o}}:=\mathrm{v}_{\mathrm{tb}} \cdot \frac{\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\mathrm{E}}, \mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{0}, \mathrm{R}_{\mathrm{L}}\right)\right)}{\mathrm{r}_{\mathrm{ie}}+\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\mathrm{E}}, \mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{0}, \mathrm{R}_{\mathrm{L}}\right)\right)} \quad \mathrm{v}_{\mathrm{o}}=0.901 \quad \quad \text { This is the voltage gain. } \\
& \mathrm{r}_{\text {out }}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{\text {ie }}, \mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{0}, \mathrm{R}_{\mathrm{E}}\right)\right) \quad \mathrm{r}_{\text {out }}=55.168 \\
& r_{i b}:=r_{x}+(1+\beta) \cdot\left(r_{e}+R_{P}\left(R_{E}, R_{P}\left(r_{0}, R_{L}\right)\right)\right) \quad r_{i b}=3.359 \bullet 10^{5} \\
& r_{\text {in }}:=R_{P}\left(r_{i b}, R_{P}\left(R_{1}, R_{2}\right)\right) \quad r_{\text {in }}=4.693 \cdot 10^{4}
\end{aligned}
$$

Note the low output resistance of the CC amplifier. It is much lower than the output resistance in the CE amplifier example. To obtain a high voltage gain and a low output resistance, a CE/CC amp can be used in cascade. We will look at such an example.

