Common-Collector Amplifier Example

$R_{P}(x, y):=\frac{x \cdot y}{x+y} \quad$ Function for calculating parallel resistors.
$\mathrm{R}_{1}:=100000 \quad \mathrm{R}_{2}:=120000 \quad \mathrm{R}_{\mathrm{C}}:=0 \quad \mathrm{R}_{\mathrm{E}}:=5600 \quad \mathrm{R}_{\mathrm{S}}:=5000 \quad \mathrm{R}_{\mathrm{L}}:=10000$
$\mathrm{V}_{\text {plus }}:=15 \quad \mathrm{~V}_{\text {minus }}:=-15 \quad \mathrm{~V}_{\text {BE }}:=0.65 \quad \mathrm{~V}_{\mathrm{T}}:=0.025 \quad \beta:=99 \quad \alpha:=0.99$
$\mathrm{r}_{\mathrm{x}}:=20 \quad \mathrm{r}_{0}:=50000$
$\mathrm{v}_{\mathrm{s}}:=1 \quad$ With $\mathrm{v}_{\mathrm{s}}=1$, the voltage gain is equal to v_{o}.

DC Bias Circuits - The second circuit follows from a Thevenin equivalent circuit looking out of the base.

$\mathrm{V}_{\mathrm{BB}}:=\frac{\mathrm{V}_{\text {plus }} \cdot \mathrm{R}_{2}+\mathrm{V}_{\text {minus }} \cdot \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{~V}_{\mathrm{BB}}=1.364$
$\mathrm{R}_{\mathrm{BB}}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right) \quad \mathrm{R}_{\mathrm{BB}}=5.455 \cdot 10^{4}$
$I_{E}:=\frac{V_{B B}-V_{\text {minus }}-V_{B E}}{\frac{R_{B B}}{1+\beta}+R_{E}} \quad I_{E}=2.557 \cdot 10^{-3}$
$r_{e}:=\frac{V_{T}}{I_{E}} \quad r_{e}=9.777$

AC Solutions

This solution uses the equations involving $\mathrm{R}_{\text {tc }}$, even though $\mathrm{R}_{\mathrm{tc}}=0$. It is based on the Thevenin emitter circuit which has $\mathrm{v}_{\mathrm{eoc}}$ in series with r_{ie}.

$\mathrm{v}_{\mathrm{tb}}:=\mathrm{v}_{\mathrm{s}} \cdot \frac{\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)}{\left.\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{P}} \mathrm{R}_{1}, \mathrm{R}_{2}\right)} \quad \mathrm{v}_{\mathrm{tb}}=0.916$
$\mathrm{R}_{\mathrm{tb}}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)\right) \quad \mathrm{R}_{\mathrm{tb}}=4.58 \cdot 10^{3}$
$\mathrm{R}_{\text {te }}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{\mathrm{E}}, \mathrm{R}_{\mathrm{L}}\right) \quad \mathrm{R}_{\text {te }}=3.59 \bullet 10^{3}$
$r^{\prime}{ }_{e}:=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e} \quad r^{\prime}{ }^{\prime}=55.779$
$\mathrm{R}_{\text {tc }}:=\mathrm{R}_{\mathrm{C}} \quad \mathrm{R}_{\text {tc }}=0$

$$
\begin{aligned}
& v_{\text {eoc }}:=v_{t b} \cdot \frac{r_{0}+\frac{R_{t c}}{1+\beta}}{r^{\prime} e^{+}+r_{0}+\frac{R_{t c}}{1+\beta}} \quad v_{\text {eoc }}=0.915 \\
& r_{i e}:=r_{\mathrm{e}} \mathrm{e} \frac{\mathrm{r}_{0}+\mathrm{R}_{\mathrm{tc}}}{\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{0}+\frac{\mathrm{R}_{\mathrm{tc}}}{1+\beta}} \quad \quad r_{i e}=55.717 \\
& v_{o}:=v_{e o c} \cdot \frac{R_{P}\left(R_{E}, R_{L}\right)}{\left.r_{i e}+R_{P} R_{E}, R_{L}\right)} \quad v_{o}=0.901 \\
& \mathrm{~A}_{\mathrm{V}}:=\mathrm{v}_{\mathrm{o}} \quad \mathrm{~A}_{\mathrm{v}}=0.901 \quad \text { This is the voltage gain. } \\
& \mathrm{r}_{\text {out }}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{\text {ie }}, \mathrm{R}_{\mathrm{E}}\right) \quad \mathrm{r}_{\text {out }}=55.168 \\
& r_{i b}:=r_{x}+(1+\beta) \cdot r_{e}+R_{t e} \cdot \frac{(1+\beta) \cdot r_{0}+R_{t c}}{r_{0}+R_{t e}+R_{t c}} \quad \quad r_{i b}=3.359 \bullet 10^{5} \\
& r_{\text {in }}:=R_{P}\left(r_{i b}, R_{P}\left(R_{1}, R_{2}\right)\right) \quad r_{\text {in }}=4.693 \bullet 10^{4}
\end{aligned}
$$

The following solution is based on the simplified T model. I prefer it when $\mathrm{R}_{\mathrm{tc}}=0$. Note that this is an exact solution, where r_{0} is considered to be an external resistor. The answers are the same as the ones in the solution above.

$v_{o}:=v_{t b} \cdot \frac{R_{P}\left(R_{E}, R_{P}\left(r_{0}, R_{L}\right)\right)}{\left.r_{i e}+R_{P} R_{E}, R_{P}\left(r_{0}, R_{L}\right)\right)} \quad v_{o}=0.901$
$\mathrm{A}_{\mathrm{v}}:=\mathrm{v}_{\mathrm{o}} \quad \mathrm{A}_{\mathrm{v}}=0.901 \quad$ This is the voltage gain.
$r_{\text {out }}:=R_{P}\left(r_{\text {ie }}, R_{P}\left(r_{0}, R_{E}\right)\right) \quad r_{\text {out }}=55.107$
$\left.r_{i b}:=r_{x}+(1+\beta) \cdot r_{e}+R_{P}\left(R_{E}, R_{P}\left(r_{0}, R_{L}\right)\right)\right) \quad r_{i b}=3.359 \cdot 10^{5}$
$\mathrm{r}_{\text {in }}:=\mathrm{R}_{\mathrm{P}}\left(\mathrm{r}_{\mathrm{ib}}, \mathrm{R}_{\mathrm{P}}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)\right) \quad \mathrm{r}_{\text {in }}=4.693 \cdot 10^{4}$

Note that the CC amplifier has a voltage gain that is just less than unity, a low output resistance, and a high input resistance.

Approximate Solution 1

Assume $\mathrm{r}_{\mathrm{x}}=0$ and $\mathrm{r}_{0}=$ infinity. See the class notes for the derivation of the gain expression.
$g_{m}:=\frac{\alpha \cdot I_{E}}{V_{T}} \quad g_{m}=0.101 \quad r_{i b}:=(1+\beta) \cdot\left(r_{e}+R_{t e}\right) \quad r_{i b}=3.6 \cdot 10^{5}$
$A_{V}:=\frac{R_{P}\left(R_{1}, R_{2}\right)}{R_{S}+R_{P}\left(R_{1}, R_{2}\right)} \cdot \frac{r_{i b}}{R_{t b}+r_{i b}} \cdot \frac{\frac{g_{m} \cdot R_{t e}}{\alpha}}{1+\frac{g_{m} \cdot R_{t e}}{\alpha}} \quad \quad A_{V}=0.902$
This is very close to the exact solution above.
$r_{\text {in }}:=R_{P}\left(r_{\text {ib }}, R_{P}\left(R_{1}, R_{2}\right)\right) \quad r_{\text {in }}=4.737 \bullet 10^{4} \quad r_{\text {out }}:=R_{P}\left(r^{\prime}{ }_{e}, R_{\text {te }}\right) \quad r_{\text {out }}=54.925$

These are close to the exact solutions above.
Approximate Solution 2

Assume $r_{x}=0$ and $r_{0}=$ infinity. See the class notes for the derivation of the gain expression.
$A_{V}:=\frac{R_{P}\left(R_{1}, R_{2}\right)}{R_{S}+R_{P}\left(R_{1}, R_{2}\right)} \cdot \frac{(1+\beta) \cdot R_{t e}}{R_{t b}+r_{i b}} \quad A_{V}=0.902$

This is the same answer as Approximate Solution 1. The answers for $r_{i n}$ and $r_{\text {out }}$ are the same.

Note that both approximate solutions can be made exact if $r_{i b}$ is added back to $r_{i b}$ and r_{0} is combined in parallel with $\mathrm{R}_{\text {te }}$. The latter can be done only when $\mathrm{R}_{\mathrm{tc}}=0$.

