ECE 3050 Analog Electronics Quiz 2

May 27, 2009

Professor Leach
Last Name: \qquad First Name: \qquad
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad

$$
\begin{aligned}
i_{c}^{\prime} & =g_{m} v_{\pi}=\beta i_{b}=\alpha i_{e}^{\prime} \quad g_{m}=\frac{I_{C}}{V_{T}} \quad \beta=g_{m} r_{\pi} \quad a=\frac{\beta}{1+\beta} \\
r_{\pi} & =\frac{V_{T}}{I_{B}} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad r_{e}^{\prime}=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e} \quad I_{C}=\beta I_{B}=\alpha I_{E}
\end{aligned}
$$

1 of 2. Replace the circuit seen looking out of the base with a Thévenin equivalent and solve for the collector current I_{C} for $V^{+}=15 \mathrm{~V}, R_{1}=4 \mathrm{k} \Omega, I_{1}=3 \mathrm{~mA}, R_{C}=1.2 \mathrm{k} \Omega, R_{E}=1.1 \mathrm{k} \Omega, V_{B E}=0.65 \mathrm{~V}$, and $\beta=49$.

$$
\begin{aligned}
& \mathrm{I}_{1}:=0.003 \quad \alpha:=\frac{\beta}{1+\beta} \quad \alpha=0.98 \\
& \mathrm{~V}_{\mathrm{CB}}:=\left(\mathrm{V}_{\mathrm{p}}-\mathrm{I}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{C}}\right)-\frac{\left.\mathrm{I}_{1} \cdot \mathrm{R}_{1}\right)-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{1}} \mathrm{R}_{\mathrm{E}} \\
& \mathrm{I}_{\mathrm{C}} \\
& \mathrm{R}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE}} \\
& \alpha
\end{aligned}
$$

2 of 2 . For the ac signal circuit circuit shown, use the simplified T model to solve for $A_{v}=v_{o} / v_{s}, r_{\text {in }}$, and $r_{\text {out }}$ for $R_{S}=75 \Omega, R_{B}=100 \Omega, R_{C}=12 \mathrm{k} \Omega, I_{E}=1 \mathrm{~mA}, r_{x}=50 \Omega, \alpha=0.99, r_{0}=\infty$, and $V_{T}=0.025 \mathrm{~V}$.

$$
\mathrm{R}_{\mathrm{S}}:=75 \quad \mathrm{R}_{\mathrm{B}}:=100 \quad \mathrm{R}_{\mathrm{C}}:=12000 \quad \mathrm{I}_{\mathrm{E}}:=0.001 \quad \mathrm{r}_{\mathrm{x}}:=50 \quad \mathrm{~V}_{\mathrm{T}}:=0.025
$$

$$
\alpha:=0.99 \quad \beta:=\frac{\alpha}{1-\alpha} \quad \beta=99
$$

$$
r_{e}:=\frac{V_{T}}{I_{E}} \quad r_{e}=25 \quad r_{e}:=\frac{R_{B}+r_{x}}{1+\beta}+r_{e} \quad r_{e}^{\prime}=26.5
$$

$$
\mathrm{v}_{\mathrm{s}}:=1 \quad \mathrm{i}_{\mathrm{e}}:=\frac{-\mathrm{v}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{S}}+\mathrm{r}_{\mathrm{e}}^{\prime}} \quad \mathrm{i}_{\mathrm{e}}=-9.852 \cdot 10^{-3} \quad \mathrm{i}^{\prime} \mathrm{c}:=\alpha \cdot \mathrm{i}_{\mathrm{e}} \quad \mathrm{i}^{\prime} \mathrm{c}=-9.75610^{-3}
$$

$$
\mathrm{v}_{\mathrm{o}}:=-\mathrm{i}^{\prime} \cdot \mathrm{R}_{\mathrm{C}} \quad \mathrm{v}_{\mathrm{o}}=117.044 \quad \text { This is the voltage gain } \frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{s}}} .
$$

$$
\mathrm{r}_{\text {in }}:=\mathrm{r}^{\prime} \mathrm{e} \quad \mathrm{r}_{\text {in }}=26.5 \quad \mathrm{r}_{\text {out }}:=\mathrm{R}_{\mathrm{C}} \quad \mathrm{r}_{\text {out }}=1.2 \cdot 10^{4}
$$

