Professor Leach Last Name: \qquad First Name:
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials

$$
i_{D}=K\left(v_{G S}-V_{T O}\right)^{2} \quad g_{m}=2 \sqrt{K I_{D}} \quad r_{s}=\frac{1}{g_{m}} \quad r_{0}=\frac{\frac{1}{\lambda}+V_{D S}}{I_{D}} \quad r_{i d}=r_{0}\left(1+g_{m} R_{t s}\right)+R_{t s}
$$

For credit, you must give all equations that you use to calculate your answers. Credit will not be given for any answer without full supporting work.

1 of 2 . For $V^{+}=+18 \mathrm{~V}, R_{2}=120 \mathrm{k} \Omega, R_{S}=800 \Omega, K=5 \times 10^{-4} \mathrm{~S}$, and $V_{T O}=2 \mathrm{~V}$, solve for R_{1} for $I_{D}=4.5 \mathrm{~mA}$.

$\mathrm{V}_{\mathrm{p}}:=18 \quad \mathrm{~K}:=0.0005 \quad \mathrm{R}_{2}:=120000 \quad \mathrm{R}_{\mathrm{S}}:=800 \quad \mathrm{~V}_{\mathrm{TO}}:=2 \quad \mathrm{I}_{\mathrm{D}}:=0.0045$
$\mathrm{V}_{\mathrm{GS}}:=\sqrt{\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{K}}}+\mathrm{V}_{\mathrm{TO}} \quad \mathrm{V}_{\mathrm{GS}}=5 \quad \mathrm{~V}_{\mathrm{G}}:=\mathrm{V}_{\mathrm{GS}}+\mathrm{I}_{\mathrm{D}} \cdot \mathrm{R}_{\mathrm{S}} \quad \mathrm{V}_{\mathrm{G}}=8.6$
$\mathrm{R}_{1}:=\mathrm{R}_{2} \cdot\left(\frac{\mathrm{~V}_{\mathrm{p}}}{\mathrm{V}_{\mathrm{G}}}-1\right) \quad \mathrm{R}_{1}=1.312 \cdot 10^{5}$

2 of 2 . For $K=5 \times 10^{-4} \mathrm{~S}, V_{T O}=2 \mathrm{~V}, I_{D}=3 \mathrm{~mA}, r_{i d}=50 \mathrm{k} \Omega, R_{i}=2 \mathrm{k} \Omega, R_{1}=22 \mathrm{k} \Omega, R_{S}=300 \Omega$, and $R_{D}=30 \mathrm{k} \Omega$, solve for the small-signal voltage gain $A_{v}=v_{o} / v_{i}$.

$\mathrm{K}:=0.0005 \quad \mathrm{~V}_{\mathrm{TO}}:=2 \quad \mathrm{I}_{\mathrm{D}}:=0.003 \quad \mathrm{r}_{\mathrm{id}}:=50000 \quad \mathrm{R}_{\mathrm{i}}:=2000 \quad \mathrm{R}_{1}:=22000$
$\mathrm{R}_{\mathrm{S}}:=300 \quad \mathrm{R}_{\mathrm{D}}:=30000 \quad \mathrm{~g}_{\mathrm{m}}:=2 \cdot \sqrt{\mathrm{~K} \cdot \mathrm{I}_{\mathrm{D}}} \quad \mathrm{g}_{\mathrm{m}}=2.44910^{-3} \quad \mathrm{r}_{\mathrm{s}}:=\mathrm{g}_{\mathrm{m}}{ }^{-1} \quad \mathrm{r}_{\mathrm{S}}=408.248$
$A_{V}:=\frac{R_{1}}{R_{i}+R_{1}} \cdot \frac{1}{r_{s}+R_{S}}-R_{p 2}\left(r_{i d}, R_{D}\right) \quad A_{V}=-24.268$

