ECE 3050 Analog Electronics Quiz 3

June 3, 2009

Professor Leach _First Name:___ Last Name:_

Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this guiz. Initials -

$$i_D = K (v_{GS} - V_{TO})^2$$
 $g_m = 2\sqrt{KI_D}$ $r_s = \frac{1}{q_m}$ $r_0 = \frac{\frac{1}{\lambda} + V_{DS}}{I_D}$ $r_{id} = r_0 (1 + g_m R_{ts}) + R_{ts}$

For credit, you must give all equations that you use to calculate your answers. Credit will not be given for any answer without full supporting work.

1 of 2. For $V^+ = +18 \,\mathrm{V}$, $R_2 = 120 \,\mathrm{k}\Omega$, $R_S = 800 \,\Omega$, $K = 5 \times 10^{-4} \,\mathrm{S}$, and $V_{TO} = 2 \,\mathrm{V}$, solve for R_1 for $I_D = 4.5 \,\mathrm{mA}$.

$$V_p := 18$$
 $K := 0.0005$ $R_2 := 120000$ $R_S := 800$ $V_{TO} := 2$ $I_D := 0.0045$

$$V_{p} := 18 \qquad K := 0.0005 \qquad R_{2} := 120000 \qquad R_{S} := 800 \qquad V_{TO} := 2 \qquad I_{D} := 0.0045$$

$$V_{GS} := \sqrt{\frac{I_{D}}{K}} + V_{TO} \qquad V_{GS} = 5 \qquad V_{G} := V_{GS} + I_{D} \cdot R_{S} \qquad V_{G} = 8.6$$

$$R_1 := R_2 \cdot \left(\frac{V_p}{V_G} - 1 \right)$$
 $R_1 = 1.312 \cdot 10^5$

2 of 2. For $K = 5 \times 10^{-4} \,\mathrm{S}$, $V_{TO} = 2 \,\mathrm{V}$, $I_D = 3 \,\mathrm{mA}$, $r_{id} = 50 \,\mathrm{k}\Omega$, $R_i = 2 \,\mathrm{k}\Omega$, $R_1 = 22 \,\mathrm{k}\Omega$, $R_S = 300 \,\Omega$, and $R_D = 30 \,\mathrm{k}\Omega$, solve for the small-signal voltage gain $A_v = v_o/v_i$.

$$K := 0.0005$$
 $V_{TO} := 2$ $I_D := 0.003$ $r_{id} := 50000$ $R_i := 2000$ $R_1 := 22000$

$$A_v := \frac{R_1}{R_i + R_1} \cdot \frac{1}{r_s + R_S} - R_{p2}(r_{id}, R_D)$$
 $A_v = -24.268$