ECE 3050 Analog Electronics Quiz 7

Professor Leach
Last Name: \qquad First Name: \qquad
Instructions. Print your name in the spaces above. Place a box around any answer. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad For credit, you must give all equations that you use to calculate your answers. Credit will not be given for any answer without full supporting work.

1 of 2. (a) Solve for the differential equation for the voltage V. Consider the current I to be an independent source.
(b) Convert the differential equation into the transfer function $T(s)=V / I$.

$$
\begin{gathered}
i=\frac{1}{L} \int v d t+\frac{1}{R} v+C \frac{d v}{d t} \quad \frac{d i}{d t}=\frac{1}{L} v+\frac{1}{R} \frac{d v}{d t}+C \frac{d^{2} v}{d t^{2}} \\
s I=\frac{1}{L} V+\frac{1}{R} s V+C s^{2} V \quad Z=\frac{V}{I}=\frac{s}{\frac{1}{L}+\frac{s}{R}+C s^{2}}=R \frac{\frac{L}{R} s}{L C s^{2}+\frac{L}{R} s+1}
\end{gathered}
$$

2 of 2 . For $R_{1}=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, R_{3}=2 \mathrm{k} \Omega$, and $R_{4}=100 \Omega, v_{1}=0.03 \mathrm{~V}$, and $v_{2}=-0.02 \mathrm{~V}$, solve for and label the voltage at each node in the circuit. (There are 7 node voltages to solve for.)

$$
\begin{gathered}
v_{N 1}=v_{1}=0.03 \mathrm{~V} \quad v_{N 2}=v_{2}=-0.02 \mathrm{~V} \\
v_{O 1}=\left(1+\frac{R_{3}}{R_{4}}\right) v_{1}-\frac{R_{3}}{R_{4}} v_{2}=21 \times 0.03-20 \times(-0.02)=1.03 \mathrm{~V} \\
v_{O 2}=\left(1+\frac{R_{3}}{R_{4}}\right) v_{2}-\frac{R_{3}}{R_{4}} v_{1}=21 \times(-0.02)-20 \times 0.03=-1.02 \mathrm{~V} \\
v_{O}=\frac{R_{2}}{R_{1}}\left(v_{O 1}-v_{O 2}\right)=2 \times(1.03+1.02)=4.1 \mathrm{~V}
\end{gathered}
$$

