ECE 3050 Analog Electronics Quiz 10

July 22, 2009

Professor Leach Last Name: \qquad First Name: \qquad
Instructions. Print your name in the spaces above. Place a box around any answer. Credit will not be given for any answer without full supporting work. Honor Code Statement: I have neither given nor received help on this quiz. Initials \qquad
$r_{i b}=r_{x}+r_{\pi}+(1+\beta) R_{t e} \quad r_{\pi}=\frac{V_{T}}{I_{B}} \quad r_{i e}=r_{e}^{\prime}=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e} \quad r_{e}=\frac{V_{T}}{I_{E}} \quad r_{i c}=\frac{r_{0}+r_{e}^{\prime} \| R_{t e}}{1-\frac{\alpha R_{t e}}{r_{e}^{\prime}+R_{t e}}} \quad r_{0}=\frac{V_{A}+V_{C E}}{I_{C}}$
A CE amplifier is shown. It is given that $R_{1}=100 \mathrm{k} \Omega, R_{2}=120 \mathrm{k} \Omega, R_{C}=5.1 \mathrm{k} \Omega, R_{E}=6.8 \mathrm{k} \Omega, R_{s}=3 \mathrm{k} \Omega$, $R_{L}=15 \mathrm{k} \Omega, V^{+}=15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}, V_{B E}=0.65 \mathrm{~V}, V_{T}=25 \mathrm{mV}, \beta=99, \alpha=0.99, r_{x}=50 \Omega, V_{A}=\infty$, $R_{3}=120 \Omega, C_{1}=0.15 \mu \mathrm{~F}, C_{2}=2.2 \mu \mathrm{~F}, C_{3}=120 \mu \mathrm{~F}$, and $I_{C}=2.53 \mathrm{~mA}$.
(a) Solve for the worst case pole frequency set by C_{1}.
(b) Solve for the worst case pole frequency set by C_{2}.
(c) Solve for the worst case pole and zero frequencies set by C_{3}.
(d) Solve for the worst case lower cutoff frequency in Hz using the equation $f_{L}=\sqrt{\Sigma p_{\text {pole }}^{2}-2 \Sigma f_{\text {zero }}^{2}}$
(e) Which capacitor dominates in setting f_{L} ?

$$
\mathrm{f}_{\mathrm{L}}:=\sqrt{\mathrm{f}_{1}^{2}+\mathrm{f}_{2}^{2}+\mathrm{f}_{3 \mathrm{p}^{2}-2 \cdot \mathrm{f}_{3 \mathrm{z}}^{2}} \quad \mathrm{f}_{\mathrm{L}}=79.082, ~}
$$

