## ECE 3050 Analog Electronics Quiz 2

June 2, 2010

Professor Leach
Last Name:
First Name:
Instructions. Print and sign your name in the spaces above. Place a box around answers when appropriate.
Honor Code Statement: I have neither given nor received help on this quiz. Initials
1 of 2. Given: $R_{C}=12 \mathrm{k} \Omega, R_{B}=82 \mathrm{k} \Omega, R_{E}=1.5 \mathrm{k} \Omega, V^{+}=15 \mathrm{~V}, \beta=99, V_{B E}=0.65 \mathrm{~V}$, and $I_{C}=\beta I_{B}=\alpha I_{E}$
(a) Write the equations for $V_{B B}$ and $R_{B B}$. Why is $R_{B}$ not a part of the equation for $V_{B B}$ ?
(b) Write the equations for $V_{C C}$ and $R_{C C}$.
(c) Draw the bias equivalent circuit and write the loop equation for $I_{C}$.
(d) Use the equation found above to solve numerically for $I_{C}$.


$$
V_{B B}=V^{+}-I_{C} R_{C} \quad R_{B B}=R_{B}+R_{C}
$$

$R_{B B}$ is not part of $V_{B B}$ because you set $I_{B}=0$ to solve for $V_{B B}$.

$$
\begin{gathered}
V_{C C}=V^{+}-I_{B} R_{C} \quad R_{C C}=R_{C} \\
V_{B B}-V_{E E}=I_{B} R_{B B}+V_{B E}+I_{E} R_{E E} \Longrightarrow V^{+}-I_{C} R_{C}=\frac{I_{C}}{\beta}\left(R_{B}+R_{C}\right)+V_{B E}+\frac{I_{C}}{\alpha} R_{E} \\
I_{C}=\frac{V^{+}-V_{B E}}{R_{C}+\frac{R_{B}+R_{C}}{\beta}+\frac{R_{E}}{\alpha}}=1 \mathrm{~mA}
\end{gathered}
$$

2 of 2 . (a) The hybrid- $\pi$ model of the BJT is shown with a Thévenin equivalent source connected to the base. Write the equation for the emitter voltage $v_{e}$ as a function of $v_{t b}, i_{b}$, and any appropriate resistors.
(b) If $i_{0}$ is neglected and $i_{c}^{\prime}=g_{m} v_{\pi}=\beta i_{b}=\alpha i_{e}^{\prime}$, solve the equation obtained above for $v_{e}$ as a function of $v_{t b}, i_{e}$, and any appropriate resistors.
(c) Use the equation obtained above to obtain and draw the Thévenin equivalent circuit seen looking into the emitter.


The circuit is a voltage source $v_{t b}$ in series with a resistor $\left(R_{t b}+r_{\pi}\right) /(1+\beta)$.

