ECE 3050 Analog Electronics Quiz 4

June 16, 2010
Professor Leach
Name
Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials
Formulas: $g_{m}=I_{C} / V_{T}, r_{\pi}=V_{T} / I_{B}, r_{e}=V_{T} / I_{E}, r_{0}=\left(V_{A}+V_{C E}\right) / I_{C}, G_{m}=\left(R_{t b} / \beta+1 / g_{m}+R_{t e} / \alpha\right)^{-1}$,

$$
r_{i b}=r_{\pi}+(1+\beta) R_{t e} \quad r_{i e}=\frac{R_{t b}+r_{x}}{1+\beta}+r_{e} \quad r_{i c}=r_{0}\left(1+\frac{\beta R_{t e}}{R_{t b}+r_{\pi}+R_{t e}}\right)+\left(R_{t b}+r_{\pi}\right) \| R_{t e}
$$

The figure shows a BJT diff amp. Given: $I_{Q}=2 \mathrm{~mA}, V_{T}=25 \mathrm{mV}, \beta=99, \alpha=0.99, V_{A}=\infty\left(r_{0}=\infty\right)$. $R_{B}=1.2 \mathrm{k} \Omega, R_{E}=163 \Omega$, and $R_{C}=18 \mathrm{k} \Omega$.
(a) Solve for the numerical expressions for the small-signal output voltages $v_{o 1}$ and $v_{o 2}$ as functions of the input voltages $v_{i 1}$ and $v_{i 2}$.
(b) What would be the expressions if the tail supply has a small-signal resistance $R_{Q}=20 \mathrm{k} \Omega$? Assume I_{E} does not change.

Solutions on page 2.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{Q}}:=0.002 \quad \mathrm{~V}_{\mathrm{T}}:=0.025 \quad \beta:=99 \quad \alpha:=0.99 \quad \mathrm{R}_{\mathrm{B}}:=1200 \quad \mathrm{R}_{\mathrm{E}}:=163 \quad \mathrm{R}_{\mathrm{C}}:=18000 \\
& I_{E}:=0.001 \quad r_{e}:=\frac{V_{T}}{I_{E}} \quad r_{e}=25 \quad r_{\pi}:=\frac{(1+\beta) V_{T}}{I_{E}} \quad r_{\pi}=2.5 \cdot 10^{3} \\
& g_{m}:=\frac{I_{C}}{V_{T}} \quad g_{m}=0.04 \quad g_{m}^{-1}=24.848 \quad r_{i e}:=\frac{R_{B}}{1+\beta}+r_{e} \quad r_{i e}=37 \\
& \mathrm{R}_{\text {te }}:=2 \cdot \mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\text {ie }} \quad \mathrm{R}_{\text {te }}=363 \quad \mathrm{~A}_{\mathrm{va}}:=\frac{-\alpha \cdot \mathrm{R}_{\mathrm{C}}}{2 \cdot\left(\mathrm{r}_{\mathrm{ie}}+\mathrm{R}_{\mathrm{E}}\right)} \quad \mathrm{A}_{\mathrm{va}}=-44.55 \\
& \mathrm{v}_{\mathrm{o} 1}=\mathrm{A}_{\mathrm{va}}\left(\mathrm{v}_{\mathrm{i} 1}-\mathrm{v}_{\mathrm{i} 2} \quad \mathrm{v}_{\mathrm{o} 2}=-\mathrm{v}_{01}\right. \\
& \mathrm{R}_{\mathrm{Q}}:=20000 \quad \mathrm{~A}_{\mathrm{vb}}:=\frac{-\alpha \cdot \mathrm{R}_{\mathrm{C}}}{\left.\mathrm{r}_{\mathrm{ie}}+\mathrm{R}_{\mathrm{E}}+\mathrm{R}_{\mathrm{p}} \mathrm{R}_{\mathrm{Q}}, \mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{ie}}\right)} \quad \mathrm{k}:=\frac{\mathrm{R}_{\mathrm{Q}}}{\mathrm{R}_{\mathrm{Q}}+\mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{ie}}} \\
& A_{\mathrm{vb}}=-44.772 \quad \mathrm{k}=0.99 \quad \mathrm{k} \cdot \mathrm{~A}_{\mathrm{vb}}=-44.328 \\
& \mathrm{v}_{\mathrm{o} 1}=\mathrm{A}_{\mathrm{vb}}\left(\mathrm{v}_{\mathrm{i} 1}-\mathrm{k} \cdot \mathrm{v}_{\mathrm{i} 2}\right) \quad \mathrm{v}_{\mathrm{o} 2}=\mathrm{A}_{\mathrm{vb}}\left(\mathrm{v}_{\mathrm{i} 2}-\mathrm{k} \cdot \mathrm{v}_{\mathrm{o} 1}\right)
\end{aligned}
$$

