ECE 3050 Analog Electronics Quiz 6

June 30, 2010
Professor Leach

Name

Instructions. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials \qquad

1. Given $R_{1}=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, R_{3}=40 \mathrm{k} \Omega$, and $R_{4}=80 \mathrm{k} \Omega$.
(a) With $v_{i 2}=0$, solve for $A_{v 1}=v_{o} / v_{i 1}$.
(b) With $v_{i 1}=0$, solve for $A_{v 2}=v_{o} / v_{i 2}$.

$$
\begin{aligned}
\frac{v_{i 1}}{R_{1}}+\frac{v_{o}}{R_{4}+R_{2} \| R_{3}} \frac{R_{3}}{R_{2}+R_{3}}=0 \Longrightarrow \frac{v_{o}}{v_{i 1}}=-\frac{\left(R_{4}+R_{2} \| R_{3}\right)\left(1+R_{2} / R_{3}\right)}{R_{1}}=-14 \\
\frac{v_{o}}{v_{o 1}}=-\frac{R_{4}}{R_{3}}=-2
\end{aligned}
$$

2. Shown is a JFET current source. Given $I_{D}=\beta\left(V_{G S}-V_{T O}\right)^{2}, \beta=16 \mathrm{mS}$, and $V_{T O}=-2 \mathrm{~V}$.
(a) Solve for $V_{G S}$ for $I_{D}=1 \mathrm{~mA}$.

$$
V_{G S}=\sqrt{\frac{I_{D}}{\beta}}+V_{T O}=-1.75 \mathrm{~V}
$$

(b) What is the required value of R_{S} for $I_{D}=1 \mathrm{~mA}$?

$$
R_{S}=\frac{-V_{G S}}{I_{D}}=1.75 \mathrm{k} \Omega
$$

