ECE 3050 Analog Electronics Quiz 9

July 21, 2010
Professor Leach
Name
Instructions. No calculators allowed on this quiz. Print your name in the space above. Honor Code:
I have neither given nor received help on this quiz. Initials \qquad

1. (a) What were the names of the two oscillator circuits covered in class?
(b) An oscillator has a loop-gain transfer function given by

$$
K \frac{(s / 100)^{2}-3(s / 100)+1}{(s / 100)^{4}+2(s / 100)^{3}+2(s / 100)^{2}+3(s / 100)+1}
$$

Determine the value of K for steady-state oscillations at the frequency $\omega=100 \mathrm{rad} / \mathrm{s}$.

$$
\begin{aligned}
s & =j 100 \\
K \frac{(s / 100)^{2}-3(s / 100)+1}{(s / 100)^{4}+2(s / 100)^{3}+2(s / 100)^{2}+3(s / 100)+1} & =K \frac{-1-j 3+1}{1-j 2-2+j 3+1}=-3 K \\
K & =-\frac{1}{3}
\end{aligned}
$$

next page
2. The figure shows a non-inverting amplifier.
(a) What is the low-frequency gain?

$$
1+\frac{R_{F}}{R_{1}+R_{2}}
$$

(b) What is the high-frequency gain?

$$
1+\frac{R_{F}}{R_{1}+R_{2} \| R_{3}}
$$

(c) Sketch the Bode magnitude plot and label the zero-slope gains.

High-pass shelving Bode plot

(d) Solve for the transfer function for V_{o} / V_{i}.

$$
\begin{gathered}
\frac{V_{f}}{V_{i}}=\frac{R_{1}+R_{2}}{R_{1}+R_{2}+R_{F}} \frac{1+\left(R_{1} \| R_{2}+R_{3}\right) C s}{1+\left[\left(R_{1}+R_{F}\right) \| R_{2}+R_{3}\right] C s} \\
\frac{V_{o}}{V_{i}}=\left(\frac{V_{f}}{V_{i}}\right)^{-1}=\left(1+\frac{R_{F}}{R_{1}+R_{2}}\right) \frac{1+\left[\left(R_{1}+R_{F}\right) \| R_{2}+R_{3}\right] C s}{1+\left(R_{1} \| R_{2}+R_{3}\right) C s}
\end{gathered}
$$

(e) Use the transfer function to identify the pole and zero frequencies for the Bode plot. Label them on the plot.

$$
\begin{aligned}
\omega_{z} & =\frac{1}{\left[\left(R_{1}+R_{F}\right) \| R_{2}+R_{3}\right] C} \\
\omega_{p} & =\frac{1}{1+\left(R_{1} \| R_{2}+R_{3}\right) C}
\end{aligned}
$$

