ECE 3050 Analog Electronics Quiz 10

July 28, 2010
Professor Leach
Name
Instructions. No calculators allowed on this quiz. Print your name in the space above. Honor Code: I have neither given nor received help on this quiz. Initials \qquad

1. For the following four feedback amplifiers, signal trace the circuits and identify whether the feedback is negative or positive. (a) positive, (b) negative, (c) positive, (d) negative, (e) negative, (f) positive

(e)

next page
2. The figure shows the signal circuit of a CE amplifier. Given: $R_{s}=1.2 \mathrm{k} \Omega, R_{1}=51 \mathrm{k} \Omega, R_{2}=62 \mathrm{k} \Omega$, $R_{C}=6.8 \mathrm{k} \Omega, R_{L}=12 \mathrm{k} \Omega, R_{E}=3.3 \mathrm{k} \Omega, R_{3}=330 \Omega, C_{1}=0.22 \mu \mathrm{~F}, C_{2}=1.2 \mu \mathrm{~F}, C_{3}=330 \mu \mathrm{~F}, r_{\pi}=2.2 \mathrm{k} \Omega$, $\beta=99, r_{0}=\infty, r_{i b}=r_{\pi}+(1+\beta) R_{t e}$, and $r_{i e}=\left(R_{t b}+r_{\pi}\right) /(1+\beta)$.
(a) Solve for the worst case high-pass pole frequency for C_{1}.
(b) Solve for the worst case high-pass pole frequency for C_{2}.
(c) Solve for the worst case high-pass shelving pole and zero frequencies for C_{3}.
(d) Solve for the worst case lower cutoff frequency f_{L} of the circuit.

$$
\begin{gathered}
r_{i b}=r_{\pi}+(1+\beta) R_{E} \| R_{3}=32.2 \mathrm{k} \Omega \quad f_{1}=\frac{1}{2 \pi\left(R_{s}+R_{1}\left\|R_{2}\right\| r_{i b}\right) C_{1}}=44.7 \mathrm{~Hz} \\
f_{2}=\frac{1}{2 \pi\left(R_{C}+R_{L}\right) C_{2}}=7.06 \mathrm{~Hz} \quad r_{i e}=\frac{R_{s}\left\|R_{1}\right\| R_{2}+r_{\pi}}{1+\beta}=33.5 \Omega \\
f_{3 p}=\frac{1}{2 \pi\left(r_{i e} \| R_{E}+R_{3}\right) C_{3}}=1.33 \mathrm{~Hz} \quad f_{3 z}=\frac{1}{2 \pi\left(R_{E}+R_{3}\right) C_{3}}=133 \mathrm{mH} \\
f_{L}=\sqrt{f_{1}^{2}+f_{2}^{2}+f_{3 p}^{2}-2 f_{3 z}^{2}}=45.3 \mathrm{~Hz}
\end{gathered}
$$

