Chapter 1

Ideal Op-Amp Circuits

The operational amplifier, or op amp as it is commonly called, is a fundamental element of
analog circuit design. It is most commonly used in amplifier and analog signal processing
circuits in the frequency band from 0 to 100 kHz. High-frequency op amps are used in
applications that require a bandwidth into the MHz range. The first op amps were vacuum-
tube circuits which were developed for use in analog computers. Modern op amps are
fabricated as integrated circuits that bare little resemblance to early circuits. This chapter
covers some of the basic applications of the op amp. It is treated as an ideal circuit element
without regard to its internal circuitry.

The notation used in this chapter is as follows: Total quantities are indicated by lower-
case letters with upper-case subscripts, e.g. vy, ip, rin. Small-signal quantities are indicated
by lower-case letters with lower-case subscripts, e.g. vy, i, Tin. Transfer function variables
and phasors are indicated by upper case letters and lower-case subscripts, e.g. V;, I,, Ziy.

1.1 The Ideal Op-Amp

The ideal op amp is a three terminal device that is modeled as a voltage-controlled voltage
source. That is, its output voltage is a gain multiplied by its input voltage. The circuit
symbol is given in Fig. 1.1(a). The input voltage is the difference voltage between the two
input terminals. The output voltage is measured with respect to the circuit ground and is
given by

vo = A(vy —v_) (1.1)

where A is the voltage gain, vy is the voltage at the non-inverting input, and v_ is the
voltage at the inverting input. The controlled source model is shown in Fig. 1.1(b).

There are three conditions that the terminal characteristics of the ideal op amp satisfy.
These are as follows:

1. The current in each input lead is zero. This means that the input resistance to each
input is infinite.
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Figure 1.1: (a) Op-amp symbol. (b) Controlled-source model of the ideal op amp.

2. The output voltage is independent of the output current. This means that the output
resistance is zero.

3. The voltage gain is very large, approaching infinity in the limit. If the output voltage
is finite, this means that the difference voltage between the two inputs must approach
Zero.

For it to be act as an amplifier, the op amp must have feedback applied from its output
to its inverting input. That is, part of the output voltage must be sampled by a network
and fed back into the inverting input. This makes it possible to design an amplifier so that
its gain is set by the feedback network.
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Figure 1.2: (a) Op amp with positive feedback. (b) Op amp with negative feedback.

To illustrate the effects of feedback, consider the circuits in Fig. 1.2. The networks
labeled N7 and N, respectively, are the input and feedback networks. The op amp of Fig.
1.2(a) has positive feedback whereas the op amp of Fig. 1.2(b) has negative feedback. Let a
unit step of voltage be applied to the input of each circuit. The arrows in the figures indicate
the directions in which the input voltages change, i.e. each input voltage goes positive. For
the circuit of Fig. 1.2(a), the positive voltage at v is fed through N; to cause the voltage
at the vy terminal to go positive. This is amplified by a positive gain (+A) and causes the
output voltage to go positive. This is fed back through Nr to make the voltage at the v
terminal to go more positive. (The arrow for the feedback voltage is enclosed in parentheses
to distinguish it from the arrow for the initial increase in voltage.) This causes the output
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voltage to increase further, causing vy to increase further, etc. It is clear that the circuit is
not stable with positive feedback.

For the circuit of Fig. 1.2(b), the positive voltage at the input is fed through N; to cause
the voltage at the v_ terminal to go positive. This is amplified by a negative gain (—A) and
causes the output voltage to go negative. This is fed back through Np to partially cancel
the positive voltage at the v_ input. Because the v_ voltage is decreased by the feedback,
it follows that vo is prevented from going more negative. Thus the circuit reaches a stable
equilibrium.

To illustrate the effects of feedback, we have used the concept of signal tracing in the
circuits of Fig. 1.2. Signal tracing is a simple concept which can be applied to any circuit to
check for positive and negative feedback. Circuits which have positive feedback are unstable
in general and are not used for amplifier circuits. With few exceptions, the circuits covered
in this chapter have only negative feedback.

1.2 Inverting Amplifiers

1.2.1 The Inverting Amplifier

Figure 1.3(a) shows the circuit diagram of an inverting amplifier. The input signal is applied
through resistor R; to the v_ op-amp input. Resistor Rp is the feedback resistor which
connects from the output to the inverting input. We will find that the voltage gain of the
circuit is negative. This is the reason it is called an inverting amplifier. The vy op-amp
input is not used. The figure shows this input grounded.
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Figure 1.3: (a) Inverting amplifier. (b) Controlled-source equivalent circuit.

For the circuit of Fig. 1.3(a), the voltage at the inverting input is given by v_ = —vp /A.
If vo is finite and A — o0, it follows that v_ — 0. Even though the v_ input is not grounded,
it is said to be a virtual ground because the voltage is zero, i.e. at ground potential. Because
i_ = 0, the sum of the currents into the v_ node through resistors R; and Rz must be zero,
ie. i1 +ip =0, where iy = v;/R; and ip = vo/Rp. Thus we can write

. . vr Vo
—0= 4+ -2 =0 1.2
11 +ip R1+RF (1.2)



4 CHAPTER 1. IDEAL OP-AMP CIRCUITS

This can be solved for the voltage gain to obtain

v R
ﬁ — ,R_T (1.3)
The input resistance is given by riny = vy /i1. Because v— = 0, it follows that
N = Ry (1.4)
The output resistance is equal to the output resistance of the op amp so that
rour =0 (1.5)

The controlled source model of the inverting amplifier is shown in Fig. 1.3(b).

Example 1 Design an inverting amplifier with an input resistance of 2 kQ, an output
resistance of 100 Q, and an open-circuit voltage gain of —30 (an inverting decibel gain
of 29.5 dB).

Solution. The circuit diagram is given in Fig. 1.4(a). For riy = 2 k2, Eq. (1.4) gives
Ry =2 kQ. For vo /vy = =30, it follows from Eq. (1.3) that Rp = 60 kQ. For rour = 100
Q, the resistor Rp = 100 © must be used in series with the output.
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Figure 1.4: (a) Circuit for Example 1. (b) Circuit for Example 2.(c) Circuit for Example 3.

Example 2 Calculate the voltage gain of the circuit of Fig. 1.4(a) if a 1 kK load resistor
is connected from the output to ground. The circuit diagram is shown in Fig. 1.4(b).



1.2. INVERTING AMPLIFIERS )

Solution. The voltage gain decreases when Ry, is added because of the drop across Ro.
The gain decreases by a factor given by the voltage division ratio

R, 1000 10
Ro+ Ry~ 1000+100 11

Thus the loaded gain is (10/11) x (—30) = —27.3 (an inverting decibel gain of 28.7 dB).

Example 3 For the inverting amplifier of Fig. 1.4(b), investigate the effect of connecting
the feedback resistor Rp to the load resistor Ry rather than to the op amp output terminal.
The circuit diagram is shown in Fig. 1.4(c).

Solution. Because i1 + ip = 0, it follows that v; /Ry + vo/Rr = 0. This can solved for
the voltage gain to obtain vo /vy = —Rp/R1. Because this is independent of Ry, it follows
that the output resistance of the circuit is zero. Thus the circuit looks like the original
circuit of Fig. 1.4(b) with Rp = 0. With Ry # 0, the op amp must put out a larger voltage
in order to maintain a load voltage that is independent of Rp. Let vy, be the voltage at the
op-amp output terminal. By voltage division, vo is given by

_ g BLllBr e
ORLHRF+RO 1+Ro/(RLHRF)

Vo

Thus vy, is larger than vo by the factor 1+ Ro/ (Rp||Rr). If a load resistor is added to the
circuit, vy, will be even larger for a given vo.

1.2.2 The Inverting Amplifier with T Feedback Network

If a high-gain inverting amplifier is required, Eq. (1.3) shows that either Rr must be large,
R; must be small, or both. If Ry is small, the input resistance given by Eq. (1.4) may be
too low to meet specifications. The inverting amplifier with a T feedback network shown in
Fig. 1.5(a) can be used to obtain a high voltage gain without a small value for R; or very
large values for the feedback resistors.

The solution for the voltage gain is simplified by making a Thevenin equivalent circuit
looking into Rs from the v_ terminal. The circuit diagram is given in Fig. 1.5(b). Because
i1 +ip = 0, it follows that

vr ”UoRg 1
R, Rs + Ry R2+R3HR4 ( )
This can be solved for the gain to obtain
VO R2 R4 R2
L | = =1+ = 1.7
vr |:R1 + R1 < * R3>:| ( )

The output resistance is zero. The input resistance is R;.

Example 4 For the inverting amplifier in Fig. 1.5(a), specify the resistor values which give
an input resistance of 10 k2 and a gain of —100. The mazximum resistor value in the circuit
is limited to 100 k€.



6 CHAPTER 1. IDEAL OP-AMP CIRCUITS
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Figure 1.5: (a) Inverting amplifier with T feedback network. (b) Equivalent circuit for
calculating vo.

Solution. To meet the input resistance specification, let Ry = 10 kQ). Let Ry, = Ry =
100 kQ. It follows from Eq. (1.7) that Rs is given by
R R -t

Rs = Ry l:—l <,U—O+—2> -1

= 12.5 k2
R4 vr Rl

1.2.3 The Current-to-Voltage Converter

The circuit diagram of a current-to-voltage converter is given in Fig. 1.6(a). The circuit
is a special case of an inverting amplifier where the input resistor is replaced with a short
circuit. Because the v_ terminal is a virtual ground, the input resistance is zero. The output
resistance is also zero. Because i1 + i = 0 and vo = ipRp, it follows that vo /i1 is given
by

v
-2 = _Rp (1.8)
11
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Figure 1.6: (a) Current-to-voltage converter. (b) Circuit with an input current source.

The circuit of Fig. 1.6(b) shows the current-to-voltage converter with a current source
connected to its input. Because Rg connects from a virtual ground to ground, the current
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through it is zero. It follows that iy = ig and vo = —Rpig. Thus the output voltage is
independent of Rg.

1.3 Non-Inverting Amplifiers
1.3.1 The Non-Inverting Amplifier

Figure 1.7(a) shows the circuit diagram of a non-inverting amplifier. The input voltage
vy is applied to the non-inverting op-amp input. A voltage divider consisting of resistors
Rpr and R; connects from the output node to the inverting input. The circuit is called a
non-inverting amplifier because its voltage gain is positive. If the circuits of the inverting
and the non-inverting amplifiers are compared, it can be seen that the two are the same if
vr = 0. Thus the only difference between the two amplifiers is the node to which the input
voltage is applied.
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Figure 1.7: (a) Non-inverting amplifier. (b) Controlled-source model.

For the circuit of Fig. 1.7(a), the voltage difference between the two op-amp inputs is

vy —v_ = vo/A. For vp finite and A — oo, it follows that v, — v_. Because there is no
voltage between the two inputs, a virtual short circuit is said to exist between them. For
i_ = 0, the condition that v, = v_ requires v; and vo to satisfy the equation
R
Uy =V = v = ! (1.9)

YORr + R,

where a voltage division has been used for v_. This can be solved for the gain to obtain
Yo _q 4 fir (1.10)

The input and output resistances are given by
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rour =0 (1.12)
The controlled source model for the non-inverting amplifier is shown in Fig. 1.7(b).

Example 5 Design a non-inverting amplifier which has an input resistance of 10 k2, an
open-circuit voltage gain of 20, and an output resistance of 600 Q. The feedback network is
specified to draw no more than 0.1 mA from the op-amp output when the peak open-circuit
output voltage is 10 V.

Figure 1.8: Circuit for Example 5.

Solution. The circuit diagram is shown in Fig. 1.8. The input and output resistance
specifications require R; = 10 k2 and Rp = 600 €. For the specified current in the feedback
network, we must have 0.1 mA < 10/ (Rr + R;). If equality is used, we obtain Rp + Ry =
100 kQ. For the specified open-circuit voltage gain, Eq. (1.10) gives 1 + Rp/R; = 20 or
Rr = 19R;. It follows that R = 5 k2 and Rr = 95 k).

Example 6 . Examine the effect of a connecting a resistor between the vy node and the
v_ node in the non-inverting amplifier of Fig. 1.7.

Solution. For an ideal op amp, vy —v_ = 0. It follows that a resistor connected between
the inputs has no current flowing through it. Therefore, the resistor has no apparent effect
on the circuit. This conclusion applies also for the inverting amplifier circuit of Fig. 1.3.
With physical op amps, however, a resistor connected between the v, and the v_ terminals
can affect the performance of the circuit by effectively reducing the open-loop gain of the
op amp.

1.3.2 The Voltage Follower

The wvoltage follower or unity-gain buffer is a non-inverting amplifier with unity gain. The
circuit diagram is shown in Fig. 1.9. Because the output node is connected directly to the
inverting input, the circuit is said to have 100% feedback. Because v, = v_, it follows that
vo = vy. Therefore, the circuit has unity voltage gain. The voltage follower is often used
to isolate a low-resistance load from a source having a high output resistance. That is, the
voltage follower supplies the current to drive the load while drawing no current from the
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input circuit. It is also used as a buffer in applications where it is desired to prevent the
frequency response of a circuit from being a function of the output resistance of the source
or a function of the load resistance.

Ur

Figure 1.9: Voltage follower or unity-gain buffer.

1.3.3 The Non-Inverting Amplifier with Voltage and Current Feed-
back

Figure 1.10(a) shows the circuit diagram of a non-inverting amplifier in which the voltage
fed back to the op-amp inverting input is a function of both the load voltage and the load
current. To solve for the output voltage, it is convenient to first form the Thevenin equivalent
circuit seen by Ry,. The circuit is shown in Fig. 1.10(b). The source has a value equal to the
open-circuit load voltage, i.e. the output voltage with Ry — oo. The resistor has a value
equal to the ratio of the open-circuit load voltage to the short-circuit load current, i.e. the
output current with Ry = 0.

(b)

Figure 1.10: (a) Non-inverting amplifier with voltage and current feedback. (b) Thevenin
equivalent circuit seen by the load.

With Ry = oo, the output voltage is given by vpoc) = i1 X (Rp + R;). Because there
is a virtual short between the vy and the v_ terminals, it follows that iy = v;/ (R1 + Ra2).
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Thus vo(oc) can be written

Rr+ R;

vo(oc) = VI R+ R (1.13)

With Ry = 0, there can be no current through Rr or R; so that v; = v_ = ig(gc)R2. Thus
to(sc) is given by
vr

to(sc) = R_2 (1.14)

The output resistance is given by

Yo(c) _ n Br+ R
10(SC) *Ri+ Ry

TouT = (1.15)

By voltage division, it follows from Fig. 1.10(b) and Eq. (1.13) that the output voltage can
be written

Ry, — Rr + Ry Ry,
rour + R~ ' Ri+ R rour + Ry,

Vo = Vo(0C) (1.16)

1.3.4 The Negative Resistance Converter

Although it is not an amplifier, the negative resistance converter is an application of the
non-inverting configuration. The circuit diagram is shown in Fig. 1.11. The resistor R
bridges the input and output terminals of a non-inverting amplifier. We can write

rin = Z’—I (1.17)
1
i = % (1.18)
Vo = <1 + %) vr (119)
Solution for ryy yields
R
N = 7R_;R (1.20)

Thus the circuit has a negative input resistance.

A resistor in parallel with another resistor equal to its negative is an open circuit. It
follows that the output resistance of a non-ideal current source, i.e. one having a non-infinite
output resistance, can be infinite by adding a negative resistance in parallel with the current
source. Negative resistors do not absorb power from a circuit. Instead, they supply power.
For example, if a capacitor with an initial voltage on it is connected in parallel with a
negative resistor, the voltage on the capacitor will increase with time. Relaxation oscillators
are waveform generator circuits which use a negative resistance in parallel with a capacitor
to generate ac waveforms.
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Figure 1.11: Negative resistance converter.

1.4 Summing Amplifiers

1.4.1 The Inverting Summer

The inverting summer is a basic op-amp circuit that is used to sum two or more signal
voltages, to sum a dc voltage with a signal voltage, etc. The circuit diagram of a four-
input inverting summer is shown in Fig. 1.12. If all inputs are grounded except the jth
input, where 7 = 1, 2, 3, or 4, Eq. (1.3) for the inverting amplifier can be used to write
vo = — (Rp/R;)vy;. It follows by superposition that the total output voltage is given by

v *f&v fﬁfu fﬁfu fﬁfu (1.21)
e o T A T A s :

The input resistance to the jth input is R;. The output resistance of the circuit is zero.

R

Ry
Yra

RS —o V
Vrs T

R, -
Vg

Figure 1.12: Four input inverting summer.

Example 7 Design an inverting summer which has an output voltage given by vo = 3—2vy.
Assume that +15 V and —15 V supply voltages are available.

Solution. The output contains a dc component of +3 V. This can be realized by using
the —15 V supply as one input. The circuit diagram is shown in Fig. 1.13. For the specified
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Figure 1.13: Circuit for Example 7.

output, we can write (—15) X (—Rp/R;) = 3 and —Rp/Ry = —2. If we choose Rp = 3 k2,
it follows that R; = 15 k2 and Ry = 1.5 k.

1.4.2 The Non-Inverting Summer

A non-inverting summer can be realized by connecting the inputs through resistors to the
input terminal of a non-inverting amplifier. Unlike the inverting amplifier, the input resistors
do not connect to a virtual ground. Thus a current flows in each input resistor that is a
function of the voltage at the other inputs. This makes it impossible to define the input
resistance for any one input unless all other inputs are grounded. The circuit diagram for a
four-input non-inverting summer is shown in Fig. 1.14(a). To solve for the output voltage,
it is convenient to first make Norton equivalent circuits at the vy terminal for each of the
inputs. The circuit is shown in Fig. 1.14(b). Eq. (1.10) can be used to write the equation

for vo as follows:
R
<1 + R_Z> V4

Rp vri , Vr2 |, Vi3 | Vi4
_ (1 Vi2 | VI Vi4 1.22
( + Ra) <R1 5 TR R4> (Ry || Rz || Rs || R4||Rs) (1.22)

Vo

The output resistance of the circuit is zero. If the v, through vy4 inputs are grounded, the
input resistance to the vy; node is given by

TIN :Rl +R2HR3HR4HR5 (123)
The input resistance to the other inputs can be written similarly.

Example 8 Design a two-input non-inverting summer which has an output voltage given
by vo = 8(vr1 + vr2). With either input grounded, the input resistance to the other input is
specified to be 10 kKQ. In addition, the current which flows in the grounded input lead is to
be 0.1 times the current that flows in the ungrounded lead.

Solution. The circuit diagram is shown in Fig. 1.15. By symmetry, it follows that
Rl = RQ. For TIN1 = 10 kQ when Vg = 0, we have Rl + R1HR3 =10 k2. For Vrg = 0, 7:2 is
given by io = —i1R3/ (Rs + R1). Thus, for i = —0.141, we must have R3/ (Rs + R;) = 0.1.
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(a) (b)

Figure 1.14: (a) Four input non-inverting summer. (b) Equivalent circuit.

Figure 1.15: Figure for Example 8.
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It follows from these two equations that Rs = 10/9.9 kQ = 1.01 kQ and R; = Ry = 9R3 =
10/1.1 k2 = 9.09 kQ. If vj; = vy = vy, we can write vo /vy = 16. Thus we can write the
design equation

V4 (Yo} R3 RF)
6=—x —=——"—(1+—
vr V4 Rs + R1HR2 < Ry

It follows from this equation that 14+ Rp/R4 = 88. This is satisfied if we choose Ry = 270 Q
and Rrp = 23.5 k).

1.5 Differential Amplifiers

1.5.1 The Single Op-Amp Diff-Amp

A differential amplifier or diff amp is an amplifier which has two inputs and one output.
When a signal is applied to one input, it operates as a non-inverting amplifier. When a signal
is applied to the other input, it operates as an inverting amplifier. The circuit diagram of
a single op-amp diff amp is shown in Fig. 1.16. Superposition can be used to write the
equation for vo as follows:

RF RF R2 RF RF
_ 1 L R .- SR (T2 W 1.24
vo = U+t < + R3> U T R R, < + ) v (1.24)

where Eqgs. (1.3) and (1.10) have been used.

2
— R3
RF Vra
1 R, MV v Ry
V50 AA - Ry+Ry
—o Vg i’l = v,
—
Y RF
A (V=)
R +R, 3

(b)

Figure 1.16: (a) Single op-amp differential amplifier. (b) Equivalent circuit for the true diff
amp.

The diff-amp output resistance is zero. The input resistance to the vy; node is

riNnt = B+ Ry (1.25)
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The current i which flows in the vyo input lead is a function of the voltage at the vy; input
and is given by

. Vr2 — U_— 1 R2

o= ———=— |V —V[1——— 1.26

e (e ey (1.20)
where v_ = v4 has been used. The input resistance to the vro node is given by ring =
vr2/i2, which depends of vy;. For example, v;1 = 0 gives rine = Rs, vj1 = —vr2 gives

riNe = R3 (R1 + Re) /(R1 +2R3), vi1 = +vpe gives ring = R3 (1 + Ro/Ry), etc. In the
case that vy is non-zero and independent of vy, riyo = Rs3 but an additional current flows
in the vy input that is due to vy;.

1.5.2 The True Diff-Amp

The output voltage of a true diff amp is zero if v;1 = vya. It follows from Eq. (1.24) that
the condition for a true diff amp is

Ry Rp
—_ = 1.27
R T (1.27)
To achieve this condition, it is common to make Ry = R3 and R = Rp. In this case, the
output voltage can be written

Rp

vo = R_3 (”U[l — ”U[Q) (1.28)

The controlled-source equivalent circuit of the true diff amp is shown in Fig. 1.5.1(b).

Example 9 For the diff-amp circuit of Fig. 1.16, it is given that Ry = R3 = 10 kQ and
Ry = Rp = 20 kQ. Solve for the output voltage of the circuit, the input resistance to the
vr1 terminal, and the input resistance to the vrs terminal for the three cases: vy = 0,
vy1 = —vr2, and vy = +vrs.

Solution. Because Rp/Rs = Ro/R;, the output voltage is given by Eq. (1.28). It is
vo = 2(vr1 —vr2). The input resistance to the vy node is 30 k2. As described above,
the input resistance to the vys terminal is a function of vy;. For vy = 0, it is 10 k€. For
V1 = —Ug2, it is 6 kQ2. For vr1 = +r2, it is 40 kQ.

1.5.3 Differential and Common-Mode Voltage Gains

Figure 1.17 shows a diff-amp circuit with three sources at its input. The two input voltages
are given by

v

vy = vou + 7[’ (1.29)
v

12 = vou — = (1.30)

2
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Figure 1.17: Diff amp with differential and common-mode inputs.

The voltage veys is called the common-mode input voltage because it appears equally at
both inputs. The voltage vp is called the differential input voltage because one-half of its
value appears at each input with opposite polarities.

It is often convenient to analyze diff-amp circuits by expressing the input voltages in
terms of common-mode and differential components. The voltages vp and veps can be
expressed in terms of vy and vyo as follows:

Up = Vr1 — V12 (1.31)

VoM = CEaE ;1}[2 (1.32)

These two equations can be used to resolve any two arbitrary input voltages into differential
and common-mode components. For example, vrs = 0 gives vp = vy; and vy = v /2,

vrg = —vq gives vp = 2vy; and vopr = 0, vre = vy gives vp = 0 and vepr = vy, ete.
By Eq. (1.24), the output voltage of the diff amp in Fig. 1.17 can be written
vp Ry Rp vp\ RF
(o ) () - 20
vo (v + 2)R1+R2< +R3> YoM =) Ry
Ry RpR; vp Rp Ry (R3 + Rr)
VoM 1-— — 14+ ——= 1.33
CMR1+R2< R2R3> 2 Rs < Rr (R, + Ry) (1.33)

This equation can be used to define the differential and common-mode voltage gains, re-
spectively, as follows:

VO RF RQ (RS + RF)
Aj=—=— (14 =—=—-7 1.34
d Up 2R3 < Rr (R1 + Ry) ( )
VO R2 RFR1>
Ao = = 1-— 1.35
vem R+ R < Ry R3 (1.35)

If Rp/R2 = Rs/R;, these equations give Ay = Rp/Rs and A, = 0.
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1.5.4 The Common-Mode Rejection Ratio

For a true diff amp, the common-mode voltage gain is zero. In practice, it is difficult to
achieve a common-mode gain that is exactly zero because of resistor tolerances and non-ideal
op-amp characteristics. A figure of merit for the true diff amp is the ratio of its differential
voltage gain to its common-mode voltage gain. This is called the common-mode rejection
ratio or CM RR. Ideally, it is infinite. The CM RR of the circuit in Fig. 1.17 is given by

R Ra(Rs+Rr)
cann A 35 (1 )
A Ra (1 _ RFRI)

Ri+R> R2Rs3

(1.36)

This is often expressed in decibels by the relation 20log (CM RR).

Example 10 For the diff-amp circuit of Fig. 1.18, solve for vo, the current i, the resistance
seen by the generator, the input voltages vriand vio, and the common-mode input voltage.

R. R
’UD —o’UO
+
i
v -
I1 Rl :RB Rg RF

1

Figure 1.18: Circuit for Example 10.

Solution. By Eq. (1.28), vp is given by

Because there is a virtual short circuit between the op-amp inverting and non-inverting
inputs, it follows that i is given by

. UD
1 = —
2R3
Thus the generator sees the resistance 2Rj.
To solve for vy and vyo, we can write

) v vp (R
vnz(R3+RF)%(R3+RF)_D<_F+1>
3
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VD RF
71[2:”011*”UD:7 R_3*1

The common-mode component of vy; and vys is given by
vntve  Rr vp _ vo
2 Rs 2 2
Thus the op amp forces a common-mode voltage at the two diff-amp inputs that is equal to
one-half the output voltage.

VeMm =

1.5.5 The Switch Hitter

The single op-amp diff amp circuit of Fig. 1.19(a) is known as a switch hitter. The signal
applied to the vy op-amp input is taken from the wiper of a potentiometer. To solve for
the output voltage as a function of the position of the wiper, we denote the potentiometer
resistance from wiper to ground by zR,, where 0 < x < 1. By voltage division, it follows
that vy = zvr. The circuit is redrawn in Fig. 1.19(b) with separate sources driving the
inverting and the non-inverting inputs. By superposition of the two sources, the output
voltage can be written

vo =2vy —vy = (2x —1)vy (1.37)

where Egs. (1.3) and (1.10) have been used. It follows that the voltage gain of the circuit
is 2z — 1. The gain is —1 for x = 0, 0 for x = 0.5, and +1 for x = 1. Thus the gain can
be varied from —1 through 0 to +1 as the position of the potentiometer wiper is varied.
Such a circuit might be used when it is desired to change the polarity of a signal when it is
summed with other signals, e.g. in a sound mixing console.

kp Ry
AN MV
Ry =Rp Ry=FRp
vy AN h U o—AMY >
>—o 1)0 ——o ’UO
Rp + TV, o—AAN— +
ZRp||(1—x)Rp
) (a) (b)

Figure 1.19: (a) Switch hitter. (b) Equivalent circuit.

1.5.6 The Two Op-Amp Diff-Amp

A two op-amp diff amp is shown in Fig. 1.20. By superposition, the output voltage is given
by
Ry Rry  Rp1Rpo Ry

ZE2 gy = SELIE2 R 1.
Rs Ry vr2 RiR3 v Ry v (1.38)
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where Eq. (1.3) has been used. The circuit operates as a true diff amp if one of two
conditions is satisfied. One condition is R; = Rp; and R3 = Ry. The other is Ry = R and
Rp1 = R3. Under either condition, vp is given by

vo = —— (vr1 — vr2) (1.39)

The input resistance to the vy input is R;. The input resistance to the vyy input is R».
The output resistance is zero.

Ry
Vs o—AAMV
RFl RF’B
R, AN R, AN
Vi —AWN— J—W
o 7)0
Vo1

Figure 1.20: Two op-amp diff amp.

The two op-amp diff amp has several advantages over the single op-amp diff amp. The
input resistance to either input is not a function of the voltage at the other input. The
common-mode voltage at the inputs is not a function of the output voltage. When the
circuit is used as a true diff amp, the differential voltage gain can be varied by varying a
single resistor. This resistor is Rpo. The single op-amp diff amp does not have this feature.

Example 11 Design a two op-amp diff amp which has a differential voltage gain of 20, a
common-mode voltage gain of 0, and an input resistance to each input of 10 k£.

Solution. For the circuit of Fig. 1.20, the input resistance specifications can be met with
R; = Ry = 10 k9. For the differential gain specification, it follows from Eq. (1.39) that
Rpy/Ry = 20. Thus we must have Rpy = 200 k. For a common-mode gain of zero, we
must have either Ry = Rp; and R3 = Ry or Ry = Ry and Rp1 = R3. Because we have
already specified that R; = Ry, we must have Rp; = R3. The value for these resistors is
arbitrary. Let Rp; = R3 = 200 k2.

1.5.7 The Instrumentation Amplifier

The diff-amp circuit of Fig. 1.21 is known as an instrumentation amplifier. In some applica-
tions, it is called an active transformer. To solve for vo, we use superposition of the inputs
vy and vyo. With vy, = 0, the v_ terminal of op amp 2 is at virtual ground and op amp 1
operates as a non-inverting amplifier. By Eq. (1.10), its output voltage is given by

R
vo1 = <1 + —F1> vr (1.40)
Ry
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Because there is a virtual short circuit between the vy and v_ inputs of op amp 1, the
voltage at the lower node of Ry is vr;. It follows that op amp 2 operates as an inverting
amplifier. By Eq. (1.3), its output voltage is given by

Vo3 = ———vp1 (1.41)

Op-amp 3 operates as a true diff amp. By Eq. (1.28), its output voltage is given by

Rps Rpo Rry
_ _ _ Br2 [y 5 ltm 1.42
Vo o (vo1 — vo2) o + o v (1.42)
Vra + Ups
7A2 Ry
A R, M
Ry B
Rl A3 —o 1)
Ry +
A% R,
= Rg= Rpy
Al
v + Vo1 =

Figure 1.21: Instrumentation amplifier.

Similarly, for vy; = 0, vo is given by

R Ry
vo = &<H2&>m (1.43)

By superposition, the total output voltage is

vo = %2 <1 + 2RR—P11> (vr1 — v12) (1.44)
This is the voltage output of a true diff amp. The input resistance to each input of the
amplifier is infinite. The output resistance is zero.

The instrumentation amplifier can be thought of as the cascade connection of two am-
plifiers. The first stage consists of op amps 1 and 2. Let its voltage gain be denoted by A;.
The second stage consists of op amp 3. Let its voltage gain be denoted by A;. The two
gains are given by

=1+2—— 14
+22 (1.45)
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A Vo Rpa
) = -
Vo1 — V02 Ry

(1.46)

It can be seen that A; represents the ratio of a differential output voltage to a differential
input voltage and A, represents the ratio of a single-ended output voltage to a differential
input voltage.

The instrumentation amplifier is used in applications where a true diff amp is required
with a very high input resistance and a very high common-mode rejection ratio. A poten-
tiometer connected as a variable resistor in series with R; can be used to adjust the voltage
gain. A potentiometer connected as a variable resistor in series with Rz can be used to
optimize the CM RR. To do this experimentally, the two inputs are connected together and
a common-mode signal voltage applied. The potentiometer in series with Rjs is adjusted for
minimum output voltage.

Example 12 Design an instrumentation amplifier which has a differential voltage gain of
100 (a decibel gain of 40 dB) and a common-mode voltage gain of zero.

Solution. The gain of 100 must be divided between the two stages of the circuit. It
is convenient to give the input stage, consisting of op amps 1 and 2, a gain of 10 and the
second stage, consisting of op amp 3, a gain of 10. Using Eqs. (1.45) and (1.46), we can
write the two design equations

oftm _ 1y g BE2

1
+ R1 R2

=10

With two equations and four unknowns, it is necessary to assign values to two of the resistors.
Let Rp1 = Rpa = 10 kQ. It follows that Ry =1 kQ and Ry = 10/4.5 k2 = 2.22 k.

1.5.8 The Differential Output Amplifier

Figure 1.22 shows the circuit diagram of a differential output amplifier. This circuit has two
output voltages which have opposite polarities. That is, if vo1 is positive, voo is negative,
and vice versa. Because the lower node of resistor R is at virtual ground, Eq. (1.10) can
be used to write for voq

vo1 = <1 + @> vy (1.47)
R’y

Because there is a virtual short between the inverting and non-inverting inputs to op amp
1, the upper node of R; sees the input voltage v;. Thus Eq. (1.3) can be use to write for
Vo2

Rpay
Vo2 = ——0 1.48
02 = — v (1.45)
In most applications of the differential output amplifier, the condition vos = —vo1 is

desired. When this is satisfied, the amplifier is said to be a balanced differential output
amplifier. This requires the condition 1 4+ Rp1/R1 = Rp2/R; which reduces to

Rp1 = Rpa — By (1.49)
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>—© 1)01

NN

Rpy

B3

' Ry

NV
5—o 7;)02

Figure 1.22: Differential output amplifier.

In this case, the output voltages can be written

R
Vo1 = —Vo2 = %UI (1.50)
1
The differential output voltage is given by
2R
Vo = Vo1 — Vo2 = RFQ”UI (1.51)
1

Example 13 Design a balanced differential output amplifier with an open-circuit voltage
gain of 4, an input resistance of 10 kL, and a balanced output resistance of 600 Q. The
amplifier is to drive a 600 Q load. If the maximum peak output voltage from each op amp is
+12 V, calculate the maximum peak load voltage and the output level in dBm for a sine wave
input signal. (The dBm is the decibel output power referenced to the power Prep =1 mW.)

Solution. The circuit diagram is shown in Fig. 1.23. For the input resistance specifica-
tion, we have R; = 10 k2. For an open-circuit voltage gain of 4, it follows from Eq. (1.51)
that 2Rpo/R1 = 4. This can be satisfied by choosing Rpe = 20 kQ and R; = 10 kQ. Eq.
(1.49) gives Rp; = 10 kQ. To achieve a 600 2 balanced output resistance, we must have
ROI = R02 and ROl + R02 = 600. It follows that ROI = R02 = 300 Q. If the Voltage
output of op amp 1 peaks at +12 V, the voltage output from op amp 2 peaks at —12 V
and the peak load voltage is vp = 24 x 600/ (600 4+ 600) = 12 V, where a voltage divider
relation has been used. The output level in dBm is given by

2,/2 122/12
Output Level = 10log VP]!—RL] = 101log {ﬁ] = 20.8 dBm
ref .
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Figure 1.23: Circuit for Example 13.

1.6 Op-Amp Differentiators

1.6.1 The Ideal Differentiator

A differentiator has an output voltage that is proportional to the time derivative of its
input voltage. Fig. 1.24 gives the circuit diagram of the op-amp differentiator. The circuit
is similar to the inverting amplifier in Fig. 1.3 with the exception that resistor R; is replaced
by a capacitor. It follows that Eq. (1.3) can be used to solve for the voltage gain transfer
function by replacing R; with the impedance of the capacitor. The transfer function is given
by

Vo RF

-0 _ __-r _ _ 1.52
% (1/018) Rpcls ( 5 )
RF
Cy AN
Vi — — ,

Figure 1.24: Ideal differentiator.

Because a multiplication by s in the complex frequency domain is equivalent to a dif-
ferentiation in the time domain, it follows from the above equation that the time domain
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output voltage is given by

dvy (t)
dt

vo (t) = —RpCh (1.53)
Thus the circuit has the transfer function of an inverting differentiator with the gain constant
RprC;. Because the gain constant has the units of seconds, it is called the differentiator time
constant. The output resistance of the circuit is zero. The input impedance transfer function
is that of the capacitor C; to virtual ground given by

1

Zin - =
015

(1.54)

With s = jw, it follows that |Z,| — 0 as w becomes large. This is a disadvantage because
a low input impedance can cause large currents to flow in the input circuit.

1.6.2 The Modified Differentiator

With s = jw, it follows from Eq. (1.52) that the magnitude of the voltage gain of the
differentiator is wRpC7. For large w, the gain can get very high. This is a disadvantage
in circuits where out-of-band high-frequency noise can be a problem. To limit the high-
frequency gain, a resistor can be used in series with C; as shown in Fig. 1.25(a). This also
has the advantage that the high-frequency input impedance does not approach zero. At
high frequencies where C; is a short, the gain magnitude is limited to the value Rr/R; and
the input impedance approaches R;. The voltage gain transfer function of the circuit with
R, is given by

v, Rr 1
Yo_ __Br _ 1.
VT TRt ios - O Xy Ran (1.55)

This is of the form of the transfer function of an ideal differentiator multiplied by the transfer
function of a low-pass filter which has a pole time constant R;C.

The Bode magnitude plot for Eq. (1.55) is given in Fig. 1.25(b). For w << 1/R;C4, the
asymptotic plot exhibits a slope of +1 dec/dec and the gain is given by V,/V; & —jwRpC;.
At w =1, 1|V,/V;| 2 RpC;. For w >> 1/R;C, the asymptotic slope is 0 and the gain
shelves at the value Rp/R;. It follows that the circuit with R; acts as a differentiator only
for frequencies such that w << 1/RyCy. The input impedance transfer function is given by

1 1 +R1015
Zin=Ri1+—=—=R X ——— 1.56
1+ 015 1 R1015 ( )

This is of the form of a constant multiplied by the reciprocal of a high-pass transfer function.
For s = jw, |Zin| — R1 as w becomes large.

Example 14 Design a modified differentiator which has a time constant of 10 msec and a
pole frequency of 1 kHz. For a 1 V peak sine-wave input signal at 100 Hz, calculate the peak
sine wave output voltage and the relative phase of the output voltage.
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7|
A
A
Ry Ry
R, VW R, |
Vi —WA—] | v +1 dec/dec
L .V,
) RpC, 1 -0
1 R.C,
(a) (b)

Figure 1.25: (a) Modified differentiator. (b) Bode plot for |V, /V;|.

Solution. The circuit diagram is shown in Fig. 1.25(a). To meet the time constant
specification, we have RpC; = 0.01. If we let C7; = 0.1 uF, it follows that R = 100 k€.
For a pole frequency of 1000 Hz, we must have R1Cy; = 1/271000. Thus R; = 10,000/27 =
1.59 k. From Eq. (1.55), the voltage gain at f = 100 Hz is given by

=6.25

Vo
Vi

_ | RrCi(427100) | _ 0.01 x 27100
| 1427100R,Cy| /14012

For a 1 V peak input sine wave at 100 Hz, the peak output voltage is 6.25 V.
It follows from Eq. (1.55) that the phase of the output signal with respect to the input
signal is

© = +90° — tan~' (27100R, Oy ) = 84.3°

A perfect differentiator has a phase of +90°. Thus there is a phase error of —5.7°. Note
that the negative sign in Eq. (1.55) does not affect the phase. This is because a negative
sign indicates an inversion whereas a phase shift is associated with a shift in time. If a sine
wave is observed on the screen of an oscilloscope, an inversion flips the sine wave about the
time axis. A phase shift causes the position of the zero crossings to shift along the time
axis.

1.7 Op-Amp Integrators

1.7.1 The Ideal Inverting Integrator

An integrator has an output voltage that is proportional to the time integral of its input
voltage. The circuit for the integrator can be obtained by interchanging the resistor and
the capacitor in the differentiator of Fig. 1.24. It is shown in Fig. 1.26. The voltage gain
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transfer function is obtained from Eq. (1.3) by replacing Rp with the complex impedance
of the capacitor C'r to obtain

Vs (1/0}75) 1
o _ _ = — 1.57
V; Rl R10p5 ( )
CF’
I
R1 11
V; o—AAN—
—o

Figure 1.26: Inverting integrator.

Because a division by s in the complex frequency domain is equivalent to an integration
in the time domain, it follows from this equation that the time domain output voltage is
given by

vo (t) = — Rllcp / vr (#) dt (1.58)

— 00

The circuit has the transfer function of an inverting integrator with the gain constant
1/R1Cr. Because R;CF has the units of seconds, it is called the integrator time constant.
The input resistance to the circuit is R;. The output resistance is zero.

1.7.2 The Modified Inverting Integrator

At zero frequency, Cr is an open circuit and the op amp in the integrator loses feedback.
For non-ideal op amps, this can cause an undesirable dc offset voltage at the output. To
provide feedback at de, a resistor can be used in parallel with Cp as shown in Fig. 1.27(a).
At low frequencies where C'r is an open circuit, the magnitude of the voltage gain is limited
to the value Rp/R;. The transfer function for the voltage gain of the integrator with Rp is
given by

VO RFH (1/0}75) RF 1 1 RFCFS

S L\ A A =— 1.
v, Ry Rs 1+ RpCps  RiCps 1+ RpCrs (1.59)

where (1.3) has been used. This is of the form of the transfer function of an ideal integrator
multiplied by the transfer function of a high-pass filter which has the pole time constant
RpCpr. The Bode magnitude plot is given in Fig. 1.27(b). For w << 1/RpCp, the plot
exhibits a slope of 0. For w >> 1/RpCF, the slope is —1 dec/dec. The circuit with Rp
acts as an integrator only for frequencies such that w >> 1/RpCp.
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1
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Figure 1.27: (a) Modified inverting integrator. (b) Bode plot for |V, /V;|.

Example 15 Design a modified integrator which has a time constant of 0.1 sec and a pole
frequency of 1 Hz. For a 1 V peak sine-wave input signal at 10 Hz, calculate the peak
sine-wave output voltage and the relative phase of the output voltage.

Solution. The circuit diagram is shown in Fig. 1.27(a). For the time constant specifica-
tion, we have R{Cp = 0.1. If we let Cr = 0.1 uF, it follows that Ry = 1 MS). For the pole
frequency of 1 Hz, we must have RpCr = 1/2m. This gives Rp =1/ (27 x 0.1u) = 1.59 MQ.
From Eq. (1.59), the gain magnitude at f = 10 Hz is

Vol |1 pmOReCp | 159
Vi| | j2rl0RCr 1+ j2710R#Cr| I1t102

For a 1 V peak input sine wave at 100 Hz, the peak output voltage is 0.158 V.
It follows from Eq. (1.59) that the phase of the output signal with respect to the input
signal is given by

¢ =—tan"!' (2710RFCF) = —84.3°

A perfect integrator has a phase of —90°. Thus there is a phase error of +5.7°. As is
discussed in Example 15, the negative sign in Eq. (1.59) indicates that the output signal is
inverted with respect to the input signal which does not affect the phase.

1.7.3 The Non-Inverting Integrator

The non-inverting integrator is shown in Fig. 1.28(a). The voltage output from the op amp
is fed back to both its inverting input and to its non-inverting input. Thus the circuit has
both positive and negative feedback. To solve for the voltage gain transfer function, it is



28 CHAPTER 1. IDEAL OP-AMP CIRCUITS

convenient to make two Norton equivalent circuits at the V; node, one looking toward the
input through the left R and the other looking toward the output through the right R. The
circuit obtained is shown in Fig. 1.28(b), where the two parallel resistors are combined into
a single resistor of value R/2. Because there is a virtual short between the V. and the V_
inputs, we can write

2= 52 31| - v e (1.60)

This equation can be solved for the voltage gain to obtain

v, 2

V.  RCs

(1.61)

This is the transfer function of a non-inverting integrator with the gain constant 2/RC. The
time constant is RC/2.

By

) v
— 7, > o
I.

V; AN AN -
— E’ —
1

(a) (b)

faviay)
’;UlbQ

()

Figure 1.28: (a) Non-inverting integrator. (b) Equivalent circuit for V,. (c) Equivalent
circuit for Z;,.

The input current in the circuit of Fig. 1.28(a) is given by

_viZVe Vi Ve Vi VN Vo 1
="t =" R<1 %>R<1 Rcs> (1.62)

where V_ = V, /2 = V;/RC's has been used. This equation can be solved for the input
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impedance to obtain

v R (-R*Cs)

I, R+ (—R%Cs) (1.63)

The equivalent circuit which has this impedance is a resistor R in parallel with a negative
inductor —R?C. The equivalent circuit is given in Fig. 1.28(c). Because the inductor is a
short circuit at zero frequency, it follows that the input impedance to the circuit is zero for
a dc source.

Example 16 The non-inverting integrator of Fig. 1.28(a) has the circuit element values
R=1Fk2and C =1 uF. For a sine wave input signal, calculate the voltage gain of the
circuit at the frequency f = 100 Hz. In addition, calculate numerical values for the circuit
elements in the equivalent circuit for the input impedance.

Solution. The gain at f = 100 Hz is calculated from Eq. (1.61) as follows:

Vo 2

From Eq. (1.63), it follows that the input impedance circuit consists of a 1000 €2 resistor
to ground in parallel with a negative inductor to ground having the value —1000% x 1076 =
—1 H.

1.8 Low-Pass Amplifiers

1.8.1 The Inverting Low-Pass Amplifier

This section covers several of the many op-amp circuits which have a voltage gain transfer
function that is of the form of single-pole low-pass and low-pass shelving transfer functions.
Fig. 1.29(a) shows the circuit diagram of an inverting low-pass amplifier. The voltage gain
is obtained from Eq. (1.3) by replacing Rr with Rr|| (1/Crs). It is given by

> 1 1

KZiRFH( /CFs) :7@x (1.64)
Vi R Ry 1+ RpCps

This is of the form of a gain constant —Rp/R; multiplied by a low-pass transfer function

having a pole time constant RpCr. The Bode plot |V, /V;| is given in Fig. 1.29(b). The

input resistance of the circuit is R;. The output resistance is zero.

Example 17 Design an inverting low-pass amplifier circuit which has an input resistance
of 10 kK, a low-frequency voltage gain of —10, and a pole frequency of 10 kHz.

Solution. The circuit diagram is shown in Fig. 1.29(a). For an input resistance of 10
kQ, we have R; = 10 k. The transfer function is given by Eq. (1.64). For a low-frequency
gain of —10, we have Rr = 10R; = 100 k. For a pole frequency of 10 kHz, we have
Cr =1/ (2710*Rp) = 159 pF.
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Figure 1.29: (a) Inverting low-pass amplifier. (b) Bode plot for |V, /V;|.

A second inverting low-pass amplifier is shown in Fig. 18. The currents I, Is, and Ip
are given by

Vi
I = 1.65
"7 R, + (1/Cs) | Ry (1.65)
1/Cs 1
— — 1.
L2 IlR2+1/Cs "1+ R,Cs (1.66)
Vo
Ir = 1.67
Fe R (1.67)

where we assume that the V_ op-amp input is at virtual ground and current division has
been used for I5. The voltage gain is obtained by setting I + Ir = 0 to obtain

Vo R P 1

V. RitRs 1+ (Ri|R)Cs

(1.68)

This is of the form of a gain constant —Rp/ (R; + Rs) multiplied by a low-pass transfer
function having a pole time constant (R ||Rz) C. The Bode plot for |V, /V;| is given in Fig.
18(b).

The output resistance of the circuit is zero. The input impedance is given by

1+ (R1HR2) Cs

1
Ty = — =
Ry + < ) |R2 = (Ry + Ry) 1T RoCs

= (1.69)

This is in the form of a low-pass shelving function having a pole time constant RoC and
a zero time constant (R1||R2) C. The Bode plot for |Zi,| is given in Fig. 18(c). The low-
frequency impedance is Ry + Ry. As frequency is increased, the impedance decreases and
shelves at the value R;.
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Figure 1.30: (a) Inverting low-pass amplifier. (b) Bode plot for |V,/V;|. (¢) Bode plot for

| Zin .
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Example 18 Specify the circuit element values for the circuit of Fig. 18(a) for an inverting
voltage gain of unity and a pole time constant of 75 ps. What is the pole frequency in the
transfer function?

Solution. Let C = 0.01 uF and R = R;. It follows from Eq. (1.68) that (R;||R2)C =
(R1/2)C = 75 x 1075, Solution for R; and Ry yields Ry = Ry = 15 k). For an inverting
voltage gain of unity, we must have Rp = R; + Ry = 30 k2. The pole frequency in the
transfer function has the frequency f =1/ (27r X 75 X 10_6) = 2.12 kHz.

1.8.2 The Non-Inverting Low-Pass Amplifier

Fig. 1.31(a) shows a non-inverting low-pass amplifier consisting of a non-inverting amplifier
with a RC' low-pass filter at its input. The voltage gain transfer function is given by

VO o V+ VO o 1/05 RF o RF 1
v;-ViXV+R+1/Cs<HR1><HR1>1+RCS (1.70)

where a voltage division and Eq. (1.10) have been used. This is of the form of a gain
constant 1 4+ Rp/R; multiplied by the transfer function of a low-pass filter having a pole
time constant RC'. The Bode magnitude plot is given in Fig. 1.31(b). The output resistance
of the circuit is zero. The input impedance is given by

1 1+ RCs
Zin—R+E—RXW (171)

This is of the form of a constant multiplied by the reciprocal of a high-pass transfer function.

—1 dec/dec

» 0

[EEN

RC
(b)

Figure 1.31: (a) Non-inverting low-pass amplifier. (b) Bode plot for |V, /V;|.

Example 19 The non-inverting amplifier of Fig. 1.31(a) is to be designed for a woltage
gain of 12. The input low-pass filter is to have a cutoff frequency of 100 kHz. Specify the
element values for the circuit.

Solution. To meet the cutoff frequency specification, it follows from Eq. (1.70) that
RC =1/ (27r105). Let C = 510 pF. It follows that R = 3.12 k). For a gain of 12, we must
have 1 + Rp/R; = 12. If we choose Ry = 1 k€, it follows that Rp = 11 k€.
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1.8.3 The Non-Inverting Low-Pass Shelving Amplifier

A non-inverting low-pass shelving amplifier is shown in Fig. 1.32(a). The voltage gain is
obtained from Eq. (1.10) by replacing Rp with Rp|| (1/Crs). It is given by

Vo + Rp||(1/CFs) _ <1+@> " 1+ (Rp||R1)Crs

=1
Vi Ry R 1+ RpCrs

(1.72)

This is of the form of a gain constant 1 + Rp/R; multiplied by a low-pass shelving transfer
function having a pole time constant RpCp and a zero time constant (Rp||Ry) Cr. The
Bode plot for |V, /V;] is shown in Fig. 1.32(b). The low-frequency gain is 1 + Rp/R;. As
frequency is increased, the gain decreases and shelves at unity.

. v,
—o V, Vi
A
Ry
A% 1+ —= '
R Ry
F —1 dec/dec
]|
[
C 1 | > ©
F T T
Ry 1 1
RpC, RpllRCp
(a) (b)

Figure 1.32: (a) Non-inverting low-pass shelving amplifier. (b) Bode plot for |V,/V;|.

Example 20 The circuit of Fig. 1.32(a) is to be designed for a low-frequency gain of 2 (a
6 dB boost). The zero frequency in the transfer function is to be 100 Hz. Specify the circuit
element values and calculate the frequency at which the voltage gain is 3 dB.

Solution. For a low-frequency gain of 2, it follows from Eq. (1.72) that 1+ Rp/R; =2
which gives Rp = R;. For the zero in the transfer function to be at 100 Hz, we have
(Rp||R1) Cr =1/ (27100). If we choose Cr = 0.1 uF, it follows that Ry = Rp = 31.8 k.
With s = j27 f, the transfer function can be written

1+ 5f/100
1+ jf/50

Yo
v =
At the 3 dB boost frequency, |V, /V;|> = 1/2. This condition gives

1+ (f/1000° 1
L+ (f/50)° 2

This is satisfied for f = 100/v/2 = 70.7 Hz.
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1.9 High-Pass Amplifiers
1.9.1 The Inverting High-Pass Amplifier

This section covers several of the many op-amp circuits which have a voltage gain that is
of the form of high-pass and high-pass shelving transfer functions. Fig. 1.33(a) shows an
inverting high-pass amplifier. The voltage gain is obtained from Eq. (1.3) by replacing R;
with Ry +1/C1s. It is given by

E _ RF _ Rpcls o 7& % R1015 (1 73)

V; N R1+1/015 - 1+R1015 - Rl 1+R1015 '
This is of the form of a gain constant —Rp/R; multiplied by a high-pass transfer function
having a pole time constant R1Cy. The Bode plot for |V, /V;] is given in Fig. 1.33(b). The
output resistance of the circuit is zero. The input impedance is given by

1 1+R1015 1+R1015
Iiw=Ri+—=—=——"7—=R} X ——— 1.74
! 015 015 ! R1015 ( )
This is of the form of a constant multiplied by the reciprocal of a high-pass transfer function.
Yo
Vi
A
By Ry
R, 1 YW R T
Vi — VW |_ +1 dec/dec
o Vo
! >
= 1
ROy
(a) (b)

Figure 1.33: (a) Inverting high-pass amplifier. (b) Bode plot for |V,/V;]|.

Example 21 Design an inverting high-pass amplifier circuit which has a gain of —10 and a
pole time constant of 500 usec. The input impedance to the circuit is to be 10 k&2 or higher.
Calculate the lower half-power cutoff frequency of the amplifier.

Solution. The circuit diagram is shown in Fig. 1.33(a). The voltage-gain transfer
function is given by Eq. (1.73). For the gain specification, we must have Rr/R; = 10. For
the pole time constant specification, we must have R;C; = 500 x 1076, Because there are
three unknowns and only two equations, one of the circuit elements must be specified before
the others can be calculated. Eq. (1.74) shows that the lowest value of the input impedance
is R;. Thus we must have R; > 10 kQ. If R; = 10 k€, it follows that C; = 0.05 uF. Let us
choose C; = 0.033 uF. It follows that R; = 15.2 k2 and Ry, = 152 k2. The lower half-power
cutoff frequency of the amplifier is f =1/ (27r x 500 x 10_6) = 318 Hz.
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1.9.2 The Non-Inverting High-Pass Amplifier

Fig. 1.341.9.2(a) shows a non-inverting high-pass amplifier. The voltage gain transfer func-
tion is given by

v, V. V R Rr Rr\ RCs
— —2 - " (1 +=E ) =(1+=£) — 1.75
v,V W R+1/Cs<+R1> <+R1>1+R05 (1.75)

where voltage division and Eq. (1.10) have been used. This is of the form of a gain constant
1+ Rr /Ry multiplied by a single-pole high-pass transfer function having a pole time constant
RC'. The Bode plot for |V, /V;| is given in Fig. 1.34(b). The output resistance of the circuit
is zero. The input impedance is given by

1 1
=R+ — =R x 09

Cs RCs (1.76)

This is of the form of a constant multiplied by the reciprocal of a high-pass transfer function.

VO‘
v
A
Ry
14 — 1 1
o 1+R1
+1 dec/dec
} » (0
/ 1
RC
(b)

Figure 1.34: (a) Non-inverting high-pass amplifier. (b) Bode plot for |V, /V;|.

Example 22 Design a non-inverting high-pass amplifier which has a gain of 15 and a lower
cutoff frequency of 20 Hz. The input resistance is to be 10 kS in the passband.

Solution. The circuit diagram is shown in Fig. 1.34(a). In the passband, C is a short
circuit. To meet the input resistance specification, we must have R = 10 k2. The voltage-
gain transfer function is given by Eq. (1.75). For a lower half-power cutoff frequency of
20 Hz, we must have RC = 1/ (2720). Solution for C' yields, C' = 0.796 uF. For the gain
specification, we must have 1 + Rp/R; = 15 or Ry = Rp/14. If Rp = 56 k{2, it follows that
Ry =4 kQ.
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1.9.3 The Non-Inverting High-pass Shelving Amplifier

A non-inverting high-pass shelving amplifier is shown in Fig. 1.35(a). The voltage gain is
given by Eq. (1.10) with Ry replaced by R; +1/Cys. It follows that the gain can be written

VO o RF o 1+(RF+R1)015

(1.77)

R =
Vi + Ry + (1/Cqs) 1+ RCys

This is of the form of a high-pass shelving transfer function having a pole time constant
R;C; and a zero time constant (Rp + R1) Cy. The Bode plot for |V,/V;| is shown in Fig.
1.35(b). It can be seen from the figure that the gain at low frequencies is unity. At high
frequencies, the gain shelves at 1 + Rp/R;.

VO
v, A
— 1, A
RF'
1+E T
Ry +1 dec/dec
Rl
1 } 1 > 0
c, 1 1
I (RF'JFRl)Cl R1C1
i (a) (b)

Figure 1.35: (a) Non-inverting high-pass shelving amplifier. (b) Bode plot for |V, /V;]|.

Example 23 Design a high-pass shelving amplifier which has unity gain at low frequencies,
a pole in its transfer function with a time constant of 75 usec, and a zero with a time
constant of 7.5 usec. What are the pole and zero frequencies and what is the gain at high
frequencies?

Solution. The circuit diagram is shown in Fig. 1.35(a). The voltage gain is given by Eq.
(1.77). For the pole and zero time constant specifications, we must have R;C7 = 7.5 usec and
(R1 4+ Rp)C1 = 75 usec. Because there are three circuit elements and only two equations,
we must specify one element in order to calculate the other two. Let C7 = 0.001 pF. It
follows that Ry = 7.5 k2 and Ry = 75 k2 — R; = 67.5 kQ2. The frequency of the zero is
=1/ (27r75 X 10_6) = 2.12 kHz. The frequency of the pole is f, = 1/ (27r7.5 X 10_6) =
21.2 kHz. The gain at high frequencies is given by 1 + Rp/R; =14 67.5/7.5 = 10.
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1.10 Op-Amp Comparators

1.10.1 The Inverting Comparator

A comparator is a circuit which has two inputs and one output. The output voltage exhibits
two stable states which depend on the relative value of one input voltage compared to the
other input voltage. The op amp is often used as a comparator. Fig. 1.36(a) shows the
circuit diagram of an op amp used as an inverting comparator. The voltage applied to the
non-inverting input is the dc reference voltage Vggr. The output voltage is given by

Vo = A (VREF — ”U[) (1.78)

where A is the op-amp gain. For an ideal op amp, we assume that A — oco. This implies
that vop — oo for v; < Vrgr and vo — —oo for v; > Vrgr. However, a physical op amp
cannot have an infinite output voltage. Let us denote the maximum value of the magnitude
of the output voltage by Vsar. We call Vgar the saturation voltage.

Yo
A
Vre - Vaar
Vo

Vepp o—— 1

“Vaar T .
Veer

(a) (b)

Figure 1.36: (a) Inverting comparator. (b) Plot of vp versus v;.

For an ideal op amp that exhibits saturation of its output voltage, the output voltage of
the inverting comparator circuit in Fig. 1.36(a) can be written

vo = Vsarsgn (Veer — v1) (1.79)

where sgn (z) is the signum function defined by sgn (z) = +1 for > 0 and sgn (z) = —1
for x < 0. The plot of vo versus vy for the circuit is given in Fig. 1.36(b).

1.10.2 The Non-Inverting Comparator

Figure 1.37(a) shows the circuit diagram of an op amp used as a non-inverting comparator.
The output voltage is given by

vo = Vsarsgn (v1 — VRer) (1.80)

The graph of vp versus vy is given in Fig. 1.37(b).
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Yo
A
Vypo—i 4 TV ear T

VREF ° P

. Vaar
Vepr

(2) (b)

Figure 1.37: (a) Non-inverting comparator. (b) Plot of vo versus vy.

1.10.3 The Comparator with Positive Feedback

Positive feedback is often used with comparator circuits. The feedback is applied from the
output to the non-inverting input of the op amp. Fig. 1.38(a) shows the circuit diagram of
an inverting op-amp comparator with positive feedback. The circuit is also called a Schmitt
trigger. The capacitor Cr in the figure is assumed to be an open circuit in the following.
This capacitor is often used to improve the switching speed of the comparator by increasing
the amount of positive feedback at high frequencies. It has no effect on the input voltage at
which the op amp switches states.

UIG— _ UO
—o Uy A
r - TVaar
NN
R

>V,
7
Ry } I Varl T
Cp Va Vp
VRER
(a) (b)
Figure 1.38: (a) Schmitt trigger. (b) Plot of vy versus vy.
The output voltage from the circuit of Fig. 1.38(a) can be written
vo = Vgarsgn (vy — vr) (1.81)
Because vp has the two stable states vo = +Vsar and vo = —Vsar, it follows that vy can
have two stable states given by
R R
Va = Vapr5—— — Vear 5 (1.82)

Rr + Ry Rr + Ry
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RF Rl

Ve = Voer—=——— + VoaAr——
B REFRF+R1 + SATRF+R1

(1.83)
where superposition and voltage division have been used for each equation. For vy < Vy, it
follows that vo = +Vsar. For vy > Vp, it follows that vo = —Vsar. For Va4 <v; < Vg, vo
can have two stable states, i.e. vo = +Vgar. The graph of vy versus v; is shown in Fig.
1.38(Db).

The value of vo for V4 < v; < Vg depends on whether v; increases from a value less
than V), or vy decreases from a value greater than V. That is, the circuit has memory. If
vr < V4 initially and vy begins to increase, vo remains at the +Vgar state until v; becomes
greater than Vg. At this point vp switches to the —Vgar state. If v; > Vg initially and vy
begins to decrease, vo remains at the —Vgar state until v; becomes less than V4. Then vg
switches to the +Vsar state. The path for vp on the graph in Fig. 1.38(b) is indicated with
arrows. The loop in the graph is commonly called a hysteresis loop.

Example 24 The Schmitt trigger circuit of Fiig. 1.38(a) has the element values Rp = 1 M)
and Ry =33 KQ. If V_ =3 V and the op amp saturation voltage is Vsar = 12 'V, calculate
the two threshold voltages V4 and Vp.

Solution. By Eqgs. (1.82) and (1.83), we have

1 0.033

Vie3x — 12 x —2° 959

A= X 10033 * 110033 v
1 .

VAN SUNIIE ST SR L SRR

1+0.033 170033



