
Dr. Leach’s Filter Potpourri
Transfer Functions

For sinusoidal time variations, the input voltage to a filter can be written

vI (t) = Re
[
Vie

jωt
]

where Vi is the phasor input voltage, i.e. it has an amplitude and a phase, and ejωt =
cosωt+ j sinωt. A sinusoidal signal is the only signal in nature that is preserved by a linear
system. Therefore, if the filter is linear, its output voltage can be written

vO (t) = Re
[
Voe

jωt
]

where Vo is the phasor output voltage. The ratio of Vo to Vi is called the voltage-gain transfer
function. It is a function of frequency. Let us denote

T (jω) =
Vo
Vi

We can write T (jω) as follows:

T (jω) = A (ω) ejϕ(ω)

where A (ω) and ϕ (ω) are real functions of ω. A (ω) is called the gain function and ϕ (ω) is
called the phase function.

As an example, consider the filter input voltage

vI (t) = V1 cos (ωt+ θ) = Re
[
V1e

jθejωt
]

The corresponding phasor input and output voltages are

Vi = V1e
jθ

Vo = V1e
jθA (ω) ejϕ(ω)

It follows that the filter voltage is

vO (t) = Re
[
V1e

jθA (ω) ejϕ(ω)ejωt
]
= A (ω)V1 cos [ωt+ θ + ϕ (ω)]

This equation illustrates why A (ω) is called the gain function and ϕ (ω) is called the phase
function.

The complex frequency s is usually used in place of jω in writing transfer functions. In
general, most transfer functions can be written in the form

T (s) = K
N (s)

D (s)

where K is a gain constant and N (s) and D (s) are polynomials in s containing no reciprocal
powers of s. The roots of D (s) are called the poles of the transfer function. The roots of
N (s) are called the zeros.

As an example, consider the function

T (s) = 4
s/4 + 1

s2/6 + 5s/6 + 1
= 4

s/4 + 1

(s/2 + 1) (s/3 + 1)
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The function has a zero at s = −4 and poles at s = −2 and s = −3. Note that T (∞) = 0.
Because of this, some texts would say that T (s) has a zero at s = ∞. However, this is not
correct because N (∞) �= 0.

Note that the constant terms in the numerator and denominator of T (s) are both unity.
This is one of two standard ways for writing transfer functions. Another way is to make the
coefficient of the highest powers of s unity. In this case, the above transfer function would
be written

T (s) = 6
s+ 4

s2 + 5s+ 6
= 6

s+ 4

(s+ 2) (s+ 3)

Because it is usually easier to construct Bode plots with the first form, that form is used
here.

Because the complex frequency s is the operator which represents d/dt in the differential
equation for a system, the transfer function contains the differential equation. Let the
transfer function above represent the voltage gain of a circuit, i.e. T (s) = Vo/Vi, where Vo
and Vi, respectively, are the phasor output and input voltages. It follows that

(
s2

6
+
5s

6
+ 1

)
Vo = 4

(s
4
+ 1
)
Vi

When the operator s is replaced with d/dt, the following differential equation is obtained:

1

6

d2vO
dt2

+
5

6

dvO
dt

+ vO =
dvI
dt
+ 4vI

where vO and vI , respectively, are the time domain output and input voltages. Note that the
poles are related to the derivatives of the output and the zeros are related to the derivatives
of the input.

How to Do Bode Plots
A Bode plot is a plot of either the magnitude or the phase of a transfer function T (jω) as a
function of ω. The magnitude plot is the more common plot because it represents the gain
of the system. Therefore, the term “Bode plot” usually refers to the magnitude plot. The
rules for making Bode plots can be derived from the following transfer function:

T (s) = K

(
s

ω0

)±n

where n is a positive integer. For +n as the exponent, the function has n zeros at s = 0.
For -n, it has n poles at s = 0. With s = jω, it follows that T (jω) = Kj±n (ω/ω0)

±n,
|T (jω)| = K (ω/ω0)

±n and � T (jω) = ±n× 90 ◦. If ω is increased by a factor of 10, |T (jω)|
changes by a factor of 10±n. Thus a plot of |T (jω)| versus ω on log− log scales has a slope
of log (10±n) = ±n decades/decade. There are 20 dBs in a decade, so the slope can also be
expressed as ±20n dB/decade.

As a first example, consider the low-pass transfer function

T (s) =
K

1 + s/ω1

This function has a pole at s = −ω1 and no zeros. For s = jω and ω/ω1 � 1,we have
T (jω) � K, |T (jω)| � K, and � T (jω) � 0 × 90 ◦ = 0 ◦. For ω/ω1 	 1, T (jω) �
K (jω/ω1)

−1, |T (jω)| � K (ω/ω1)
−1, and � T (jω) � −1× 90 ◦ = −90 ◦. On log− log scales,
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the magnitude plot for the low-frequency approximation has a slope of 0 while that for the
high-frequency approximation has a slope of−1. The low and high-frequency approximations
intersect when K = K (ω1/ω), or when ω = ω1. For ω = ω1, |T (jω)| = K/ |1 + j| = K/

√
2

and � T (jω) = − arctan (1) = −45 ◦. Note that this is the average value of the phase on
the two adjoining asymptotes. The Bode magnitude and phase plots are shown in Fig. 1.
Note that the slope of the asymptotic magnitude plot rotates by −1 at ω = ω1. Because
ω1 is the magnitude of the pole frequency, we say that the slope rotates by −1 at a pole.
A straight line segment that is tangent to the phase plot at ω = ω1 would intersect the 0 ◦

level at ω1/4.81 and the −90 ◦ level at 4.81ω1.

Figure 1 Bode plots. (a) Magnitude. (b) Phase.

As a second example, consider the transfer function

T (s) = K

(
1 +

s

ω1

)

This function has a zero at s = −ω1. For s = jω and ω/ω1 � 1,we have T (jω) � K,
|T (jω)| � K, and � T (jω) � 0× 90 ◦ = 0 ◦. For ω/ω1 	 1, T (jω) � K (jω/ω1)

1 |T (jω)| �
K (ω/ω1) and � T (jω) � +1×90 ◦ = 90 ◦. On log− log scales, the magnitude plot for the low-
frequency approximation has a slope of 0 while that for the high-frequency approximation has
a slope of +1. The low and high-frequency approximations intersect when K = K (ω/ω1),
or when ω = ω1. For ω = ω1, |T (jω)| = K

√
2 and � T (jω) = arctan (1) = 45 ◦. Note

that this is the average of the phase on the two adjoining asymptotes. The Bode magnitude
and phase plots are shown in Fig. 2. Note that the slope of the asymptotic magnitude plot
rotates by +1 at ω = ω1. Because ω1 is the magnitude of the zero frequency, we say that
the slope rotates by +1 at a zero. A straight line segment that is tangent to the phase plot
at ω = ω1 would intersect the 0 ◦ level at ω1/4.81 and the 90 ◦ level at 4.81ω1.

Figure 2 Bode plots. (a) Magnitude. (b) Phase.

From the above examples, we can summarize the basic rules for making Bode plots as
follows:

1. In any frequency band where a transfer function can be approximated by K (jω/ω0)
±n,

the slope of the Bode magnitude plot is ±n dec/dec. The phase is ±n× 90 ◦.
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2. Poles cause the asymptotic slope of the magnitude plot to rotate clockwise by one unit
at the pole frequency.

3. Zeros cause the asymptotic slope of the magnitude plot to rotate counter-clockwise by
one unit at the zero frequency.

As a third example, consider the transfer function

T (s) = K
s/ω1

s/ω1 + 1

This function has a pole at s = −ω1 and a zero at s = 0. For s = jω and ω/ω1 � 1,we have
|T (jω)| � K (ω/ω1) and � T (jω) � 90 ◦. For ω/ω1 	 1, |T (jω)| � K and � T (jω) � 0 ◦.
On log− log scales, the magnitude plot for the low-frequency approximation has a slope of
+1 while that for the high-frequency approximation has a slope of 0. The low and high-
frequency approximations intersect when K (ω/ω1) = K, or when ω = ω1. For ω = ω1,
|T (jω)| = K/

√
2 and � T (jω) = 90 ◦ − arctan (1) = 45 ◦. The Bode magnitude and phase

plots are shown in Fig. 3. Note that the slope of the asymptotic magnitude plot rotates
by −1 at the pole. The transfer function is called a high-pass function because its gain
approaches zero at low frequencies.

Figure 3 Bode plots. (a) Magnitude. (b) Phase.

A shelving transfer function has the form

T (s) = K
1 + s/ω2
1 + s/ω1

The function has a pole at s = −ω1 and a zero at s = −ω2. We will consider the low-pass
shelving function for which ω1 < ω2. For s = jω and ω/ω1 � 1, we have |T (jω)| � K and
� T (jω) � 0 ◦. As ω is increased, the pole causes the asymptotic slope to rotate from 0 to
−1 at ω1. The zero causes the asymptotic slope to rotate from −1 back to 0 at ω2. For
ω/ω2 	 1, |T (jω)| � K (ω1/ω2). The Bode magnitude plot is shown in Fig. 4(a). If the
transfer function did not have the zero, the actual gain at ω1 would be K/

√
2. The zero

causes the gain to be between K/
√
2 and K. Similarly, the pole causes the actual gain at ω2

to be between K (ω1/ω2) and
√
2K (ω1/ω2). The actual plot intersects the asymptotic plot

at the geometric mean frequency
√
ω1ω2.

The phase plot has a slope that approaches 0 ◦ at very low frequencies and at very high
frequencies. At the geometric mean frequency

√
ω1ω2, the phase is approaching −90 ◦. If

the function only had a pole, the phase at ω1 would be −45 ◦, approaching −90 ◦ at higher
frequencies. However, the zero causes the high-frequency phase to approach 0 ◦. Thus the
phase at ω1 is more positive than −45 ◦. At the geometric mean frequency

√
ω1ω2, the slope

of the phase function is zero. The Bode phase plot is shown in Fig. 4(b).
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Figure 4 Bode plots. (a) Magnitude. (b) Phase.

Classes of Filter Functions
The filters considered in this experiment can be divided into four classes. These are low-pass,
high-pass, band-pass and band-reject. Although it is impossible to realize an ideal filter, the
characteristics of the four classes of filters are simplest to describe for ideal filters. An
ideal low-pass filter has a cutoff frequency below which the gain is independent of frequency
and above which the gain is zero. Fig. 5(a) illustrates the magnitude response of an ideal
low-pass filter having a gain K. The responses of two physically realizable filters are also
shown. An ideal high-pass filter has a cutoff frequency above which the gain is constant and
below which the gain is zero. The magnitude responses of an ideal high-pass filter and two
physically realizable filters are illustrated in Fig. 5(b). An ideal band-pass filter has two
cutoff frequencies between which the gain is constant and zero elsewhere. The magnitude
responses of an ideal band-pass filter and two physically realizable filters are illustrated in
Fig. 5(c). An ideal band-reject filter has two cutoff frequencies between which the gain is
zero and constant elsewhere. The magnitude responses of an ideal band-reject filter and two
physically realizable filters are illustrated in Fig. 5(d).

Figure 5 (a) Low pass. (b) High pass. (c) Band pass. (d) Band reject.

Low-pass filters are used in applications where it is desired to remove the high-frequency
content of a signal. For example, aliasing distortion can occur if a signal is applied to the
input of an analog-to-digital converter that has a frequency higher than one-half the sampling
frequency of the converter. A low-pass filter might be used to limit the bandwidth of the
signal. Similarly, a high-pass filter is used in applications where it is desired to remove the
low-frequency content of a signal. For example, the tweeter driver in a loudspeaker can be
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damaged by low frequencies signals. To prevent this, a high-pass filter called a crossover
network must be connected to the tweeter.

A band-pass filter is used in applications where it is desired to pass only the frequencies
in a band. For example, to detect a low level tone that is buried in noise, a band-pass
filter might be used to pass the tone and reject the noise. A band-reject filter is used in
applications where it is desired to reject a particular frequency or band of frequencies. For
example, a 60 Hz hum induced in the amplifier of a public address system might be filtered
out with a band-pass filter.

Frequency Transformations
Filter transfer functions are normally derived as low-pass functions. Frequency transforma-
tions are then used to transform the low-pass functions into either high-pass, band-pass,
or band-reject transfer functions. For a low-pass filter, let the normalized frequency p be
defined by

p =
s

ωc

where ωc is a normalization frequency. For the case of low-pass and high-pass filters, ωc
is the called the cutoff frequency of the filter. Depending on the type of filter, it is not
necessarily the −3 dB cutoff frequency. To distinguish between the two in the following, ω3
is used to denote the −3 dB cutoff frequency. In the case of a band-pass filter, ωc is the
center frequency of the band-pass response. In the case of a band-reject filter, ωc is the
center frequency of the band-reject response.

The frequency transformations are defined as follows:

Low-Pass to High-Pass p → 1

p

Low-Pass to Band-Pass p → B

(
p+

1

p

)

Low-Pass to Band-Reject p → B−1

(
p+

1

p

)−1

where the arrow is read “is replaced by”. The parameter B determines the −3 dB bandwidth
of the band-pass and band-reject functions.

Transformations of First-Order Functions

As an example, consider the first-order low-pass filter function

TLP (s) =
1

1 + s/aωc

where a is a positive constant. The function TLP (p) is given by

TLP (p) =
1

1 + p/a

The high-pass, band-pass, and band-reject transfer functions are given by

High-Pass THP (p) =
1

1 + 1/ap
=

ap

1 + ap

Band-Pass TBP (p) =
1

1 +B (p+ 1/p) /a
=

(a/B) p

p2 + (a/B) p+ 1
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Band-Reject TBR (p) =
1

1 +B−1 (p+ 1/p)−1 /a
=

p2 + 1

p2 + (1/aB) p + 1

Note that the order of the transfer function is doubled for the band-pass and band-reject
transformations.

Transformations of Second-Order Functions

Consider the second-order low-pass function

TLP (s) =
1

(s/aωc)
2 + (1/b) (s/aωc) + 1

where a and b are positive constants. The function TLP (p) is given by

TLP (p) =
1

(p/a)2 + (1/b) (p/a) + 1

The high-pass, band-pass, and band-reject transfer functions are given by

High Pass THP (p) =
1

(1/ap)2 + (1/b) (1/ap) + 1
=

(ap)2

(ap)2 + (1/b) (ap) + 1

Band Pass TBP (p) =
1

[B (p+ 1/p) /a]2 + (1/b) [B (p+ 1/p) /a] + 1

=
(a2/B2) p2

p4 + (a/bB) p3 + (a2/B2 + 2) p2 + (a/bB) p+ 1

Band Reject TBR (p) =
1

[
B−1 (p+ 1/p)−1 /a

]2
+ (1/b)

[
B−1 (p+ 1/p)−1 /a

]
+ 1

=
(p2 + 1)

2

p4 + (1/abB) p3 + (1/a2B2 + 2) p2 + (1/abB) p+ 1

Butterworth Filter Transfer Functions
The Butterworth Approximation

The general form of a nth-order low-pass filter transfer function having no zeros can be
written

TLP (s) = K
1

1 + c1 (s/ωc) + c2 (s/ωc)
2 + · · ·+ cn (s/ωc)

n

where K is the dc gain constant, ωc is a normalization frequency, and the ci are positive
constants. The magnitude squared function is obtained by setting s = jω and solving for
|TLP (jω)|2. This function contains only even powers of ω and is of the form

|TLP (jω)|2 = K2 1

1 + C1 (ω/ωc)
2 + C2 (ω/ωc)

4 + · · ·+ Cn (ω/ωc)
2n

where the Ci are positive constants which are related to the ci.
For the Butterworth filter, the constants Ci are chosen so that |TLP (jω)|2 approximates

the magnitude squared function of an ideal low-pass filter in the maximally flat sense. The
magnitude squared function for the ideal filter is defined by

|TLP (jω)|2 = K2 for ω ≤ ωc

= 0 for ω > ωc
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To obtain the maximally-flat approximation, the Ci are chosen to make as many derivatives
as possible of |TLP (jω)|2 equal to zero at ω = 0. If the derivative of a function is zero, the
derivative of the reciprocal of the function is also zero. It follows that the maximally flat
condition can be imposed by solving for the constants Ci which make as many derivatives as

possible of
[
|TLP (jω)|2

]−1
equal to zero at ω = 0. Because the denominator polynomial of

|TLP (jω)|2 is an even function, all odd-order derivatives are already zero at ω = 0. For the
second derivative to be zero, we must have C1 = 0. For the fourth derivative to be zero, we
must have C2 = 0. This procedure is repeated to obtain Ci = 0 for all i. However, we cannot
set Cn = 0 because this would make the approximating function independent of frequency.
Therefore, we set Ci = 0 for all 1 ≤ i ≤ n− 1 to obtain

|TLP (jω)|2 = K2 1

1 + Cn (ω/ωc)
2n

The first 2n− 1 derivatives of this function are zero at ω = 0.
It is standard to choose Cn to make |TLP (jωc)|2 = K2/2. This forces the−3 dB frequency

ω3 to be equal to the normalization frequency ωc. This condition requires Cn = 1. Thus the
magnitude squared function of the nth-order Butterworth low-pass filter becomes

|TLP (jω)|2 = K2 1

1 + (ω/ωc)
2n

Figure 6 shows example plots of |TLP (jω)| for 1 ≤ n ≤ 5 for the Butterworth low-pass
filter. The plots assume that K = 1. The horizontal axis is the normalized radian frequency
v = ω/ωc. Each function has the value 1 at v = 0, the value 0.5 at v = 1, and approaches 0
as v →∞. As the order n increases, the width of the flat region in the passband is extended
and the filter exhibits a sharper cutoff. The response characteristic is called maximally flat
because there are no ripples in the passband response.

2.521.510.50
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0
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Figure 6 Plots of the Butterworth magnitude response for 1 ≤ n ≤ 5.

To illustrate how the maximally flat condition is applied to a specific filter transfer
function, consider the third-order low-pass function

TLP (s) = K
1

1 + c1 (s/ωc) + c2 (s/ωc)
2 + c3 (s/ωc)

3

The magnitude squared function is given by

|TLP (jω)|2 = K2 1

1 + (c21 − 2c2) (ω/ωc)2 + (c22 − 2c1c3) (ω/ωc)4 + c23 (ω/ωc)
6
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For this to be maximally flat with a −3 dB cutoff frequency of ωc, we must have

c21 − 2c2 = 0

c22 − 2c1c3 = 0

c3 = 1

Solution for c1 and c2 yields c1 = c2 = 2. Thus the Butterworth third-order low-pass transfer
function is

TLP (s) = K
1

1 + 2 (s/ωc) + 2 (s/ωc)
2 + (s/ωc)

3

= K
1

1 + (s/ωc)
× 1

1 + (s/ωc) + (s/ωc)
2

The maximally flat filters are called Butterworth filters after S. Butterworth who de-
scribed the procedure for deriving the transfer functions in his 1930 paper “On the Theory
of Filter Amplifiers” which was published in Wireless Engineer. The resulting denomina-
tor polynomials for TLP (s) are called Butterworth polynomials. The first six Butterworth
polynomials in factored form are

b1 (x) = (x+ 1)

b2 (x) =
(
x2 + 1.4142x+ 1

)

b3 (x) = (x+ 1)
(
x2 + x+ 1

)

b4 (x) =
(
x2 + 0.7654x+ 1

) (
x2 + 1.8478x+ 1

)

b5 (x) = (x+ 1)
(
x2 + 0.6180x+ 1

) (
x2 + 1.6180x+ 1

)

b6 (x) =
(
x2 + 0.5176x+ 1

) (
x2 + 1.4142x+ 1

) (
x2 + 1.9319x+ 1

)

Even-Order Butterworth Filters

For an even-order Butterworth low-pass filter of order n, the transfer function can be written
in the product form

TLP (s) =

n/2∏

i−1

1

(s/ωc)
2 + (1/bi) (s/ωc) + 1

The constants bi are given by

bi =
1

2 sin θi

where the θi are given by

θi =
2i− 1

n
× 90 ◦ for 1 ≤ i ≤ n

2

Example 1 Solve for the transfer functions of the second-order Butterworth low-pass and

high-pass filters.

Solution. For n = 2, there is only one second-order transfer function. The calculations
are summarized as follows:

i θi bi
1 45 ◦ 1/

√
2
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The low-pass transfer function is given by

T (s) = K
1

(s/ωc)
2 +

√
2 (s/ωc) + 1

The high-pass transfer function is obtained by replacing s/ωc with ωc/s to obtain

T (s) = K
1

(ωc/s)
2 +

√
2 (ωc/s) + 1

= K
(s/ωc)

2

(s/ωc)
2 +

√
2 (s/ωc) + 1

Odd-Order Butterworth Filters

For an odd-order Butterworth low-pass filter of order n, the transfer function can be written
in the product form

TLP (s) =
1

s/ωc + 1
×
(n−1)/2∏

i=1

1

(s/ωc)
2 + (1/bi) (s/ωc) + 1

The constants bi are given by

bi =
1

2 sin θi

where the θi are given by

θi =
2i− 1

n
× 90 ◦ for 1 ≤ i ≤ n− 1

2

Example 2 Solve for the transfer functions of the third-order Butterworth low-pass and

high-pass filters.

Solution. For n = 3, each transfer function contains one first-order polynomial and one
second-order polynomial. The calculations for the second-order polynomial are summarized
as follows:

i θi bi
1 30 ◦ 1

The low-pass transfer function is given by

TLP (s) =
1

(s/ωc) + 1
× 1

(s/ωc)
2 + (s/ωc) + 1

The high-pass transfer function is obtained by replacing s/ωc with ωc/s to obtain

THP (s) =
1

(ωc/s) + 1
× 1

(ωc/s)
2 + (ωc/s) + 1

=
(s/ωc)

(s/ωc) + 1
× (s/ωc)

2

(s/ωc)
2 + (s/ωc) + 1
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The Cutoff Frequency

For the Butterworth low-pass and high-pass filter functions, the cutoff frequency ωc is the
frequency at which the magnitude-squared function is down by a factor of 1/2. This is the
−3 dB frequency ω3. For the band-pass and band-reject filter functions, the cutoff frequency
ωc is the so-called center frequency. There are two frequencies, one on each side of ωc, at
which the magnitude-squared function is down by a factor of 1/2. These are the two −3 dB
frequencies. Let these be denoted by ωc1 and ωc2. If these are specified, the center frequency
ωc and the parameter B in the frequency transformations are given by

ωc =
√
ωc1ωc2 B =

ωc
ωc2 − ωc1

Chebyshev Filter Transfer Functions
The Chebyshev Approximation

In 1899, the Russian mathematician P. L. Chebyshev (also written Tschebyscheff, Tchebysh-
eff, or Tchebicheff) described a set of polynomials tn (x) which have the feature that they
ripple between the peak values of +1 and −1 for −1 ≤ x ≤ +1. His polynomials are widely
used in filter approximations for frequencies that span the audio band to the microwave
band. The first six Chebyshev polynomials are

t1 (x) = x

t2 (x) = 2x2 − 1
t3 (x) = 4x3 − 3x
t4 (x) = 8x4 − 8x2 + 1
t5 (x) = 16x5 − 20x3 + 5x
t6 (x) = 32x6 − 48x4 + 18x2 − 1

Figure 7 shows the plots of the first four of these polynomials over the range −2 ≤ x ≤ +2.

2.51.250-1.25-2.5
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Figure 7 Plots of Chebyshev polynomials for 1 ≤ n ≤ 4.

The Chebyshev approximation to the magnitude squared function of a low-pass filter is
given by

|TLP (jω)|2 = K2 1 + ε2t2n (0)

1 + ε2t2n (ω/ωc)

where K is the dc gain constant and ε is a parameter which determines the amount of ripple
in the approximation. For ω = 0, it follows that |TLP (jω)|2 = K2. For n odd, t2n (0) = 0 so
that the numerator in |TLP (jω)|2 has the value 1. For 0 ≤ ω ≤ ωc, the denominator ripples
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between the values 1 and 1 + ε2. This causes |TLP (jω)|2 to ripple between the values K2

and K2/ (1 + ε2). At ω = ωc, it has the value K2/ (1 + ε2). For ω > ωc, |TLP (jω)|2 → 0.
For n even, t2n (0) = 1 so that the numerator in |TLP (jω)|2 has the value 1 + ε2. For

0 ≤ ω ≤ ωc, the denominator ripples between the values 1 and 1+ε2. This causes |TLP (jω)|2
to ripple between the values K2 and K2 (1 + ε2). At ω = ωc, it has the value K2. For ω > ωc,
|TLP (jω)|2 → 0. The major difference between the even and odd order approximations is
that the odd-order functions ripple down from the zero frequency value whereas the even-
order functions ripple up.

Figure 8 shows example plots of |TLP (jω)| for the 0.5 dB ripple 4th and 5th order filters.
The plots assume that K = 1. The horizontal axis is the normalized radian frequency
v = ω/ωc. The figure shows the 4th order approximation rippling up by 0.5 dB from its
zero frequency value. The 5th order approximation ripples down by 0.5 dB from its zero
frequency. Compared to the Butterworth filters, the Chebyshev filters exhibit a sharper
cutoff at the expense of ripple in the passband. The more the ripple, the sharper the cutoff.
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Figure 8 Plots of the magnitude responses of the 0.5 dB ripple 4th and 5th order Chebyshev
filters.

The dB Ripple

The dB ripple for a Chebyshev filter is the peak-to-peak passband ripple in the Bode mag-
nitude plot of the filter response. The dB ripple determines the parameter ε as follows:

dB ripple = 10 log
(
1 + ε2

)

This can be solved for ε to obtain

ε =
√
10dB/10 − 1

The Cutoff Frequency

Unlike the Butterworth filter, the cutoff frequency for the Chebyshev filter is not the fre-
quency at which the response is down by 3 dB. The cutoff frequency is the frequency at
which the Bode magnitude plot leaves the “equal-ripple box” in the filter passband. For the
even-order low-pass filters, the gain at the cutoff frequency is equal to the zero frequency
gain. For the odd-order low-pass filters, the gain at the cutoff frequency is down from the
zero frequency gain by an amount equal to the dB ripple.

For the nth-order Chebyshev low-pass filter, the −3 dB frequency ω3 can be related to
the cutoff frequency ωc by setting |F (jω)|2 = K2/2. The value of ω which satisfies this
equation is the −3 dB frequency ω3. If we let x = ω/ωc, this leads to the equation

tn (x)−
√
1

ε2
+ 2t2n (0) = 0

12



The positive value of x which satisfies this equation is the desired solution. If the −3 dB
frequency for the low-pass and high-pass filters is specified, the required cutoff frequency ωc
is given by

Low Pass (of order n) ωc =
ω3
x

High Pass (of order n) ωc = xω3

For the band-pass and band-reject filter functions, the cutoff frequency ωc is the so-called
center frequency. There are two frequencies, one on each side of ωc, at which the magnitude-
squared function is down by a factor of 1/2. These are the two −3 dB frequencies. Let these
be denoted by ωc1 and ωc2. If these are specified, the center frequency ωc and the parameter
B in the frequency transformations are given by

ω2 − ωc1ωc2
ωωc

=
ωc1 − ωc2

ωc
=

ωc2 − ωc1
ωc

Band Pass (of order 2n) ωc =
√
ωc1ωc2 B =

xωc
ωc2 − ωc1

Band Reject (of order 2n) ωc =
√
ωc1ωc2 B =

ωc/x

ωc2 − ωc1
where ω3 is the −3 dB radian frequency. For any x, there are two values of ω3 which satisfy
the band-pass and band-reject relations. Denote these by ωa and ωb. The geometric mean
of these two frequencies must equal ωc, i.e. ωc =

√
ωaωb. In a design from specifications,

the −3 dB frequencies might be specified for the band-pass and band-reject filters. In this
case, the required values for the center frequency and the parameter B in the frequency
transformation can be solved for.

Example 3 An 4th-order 0.5 dB ripple low-pass filter is to have the −3 dB cutoff frequency
f3 = 10 kHz. Calculate the required cutoff frequency fc.

Solution. The parameter ε has the value ε =
√
100.5/10 − 1 = 0.34931. We must solve for

the positive real root of the equation

8x4 − 8x2 + 1−
√

1

0.349312
+ 2 = 0

The desired root is x = 1.1063. It follows that the required cutoff frequency is fc = f3/x =
9.039 kHz.

Example 4 An 4th-order 0.5 dB ripple high-pass filter is to have the −3 dB cutoff frequency
f3 = 10 kHz. Calculate the required cutoff frequency fc.

Solution. The value of x from the low-pass example gives fc = xf3 = 11.063 kHz.

Example 5 An 8th-order 0.5 dB ripple band-pass filter is to have a center frequency fc =
10 kHz and a bandwidth fc2 − fc1 = 2kHz. Note that the transfer function is obtained from
that for the 4th-order LPF so that the band-pass filter is 8th order. Calculate the value of B
in the low-pass to band-pass transformation.

Solution. The value of x from the low-pass example gives B = xfc/ (fc2 − fc1) = 5.532.

Example 6 An 8th-order 0.5 dB ripple band-reject filter is to have a center frequency fc =
10 kHz and a bandwidth fc2 − fc1 = 2kHz. Note that the transfer function is obtained from
that for the 4th-order LPF so that the band-reject filter is 8th order.. Calculate the value of
B in the low-pass to band-pass transformation.

Solution. The value of x from the low-pass example gives B = (fcx
−1) / (fc2 − fc1) = 4.52.

13



The Parameter h
To write the Chebyshev transfer functions, the parameter h is required. Given the order n
and the ripple parameter ε, h is defined by

h = tanh

(
1

n
sinh−1

1

ε

)

Even-Order Chebyshev Filters

For an even-order Chebyshev low-pass filter of order n, the transfer function can be written
in the product form

TLP (s) =

n/2∏

i=1

1

(s/aiωc)
2 + (1/bi) (s/aiωc) + 1

The constants ai and bi are given by

ai =

(
1

1− h2
− sin2 θi

)1/2
for 1 ≤ i ≤ n/2

bi =
1

2

(
1 +

1

h2 tan2 θi

)1/2
for 1 ≤ i ≤ n/2

where the θi are given by

θi =
2i− 1

n
× 90 ◦ for 1 ≤ i ≤ n/2

Example 7 Solve for the transfer function of the 0.5 dB ripple fourth-order Chebyshev low-
pass and high-pass filters.

Solution. The parameters ε and h are given by

ε =
(
100.5/10 − 1

)1/2
= 0.3493

h = tanh

(
1

4
sinh−1

1

0.3493

)
= 0.4166

For n = 4, there are two second-order polynomials in each transfer function. The calculations
are summarized as follows:

i θi ai bi
1 22.5 ◦ 1.0313 2.9406
2 67.5 ◦ 0.59703 0.7051

The low-pass transfer function is given by

TLP (s) =
1

(s/1.0313ωc)
2 + (1/2.9406) (s/1.0313ωc) + 1

× 1

(s/0.59703ωc)
2 + (1/0.7051) (s/0.59703ωc) + 1

14



The high-pass transfer function is obtained by replacing s/ωc with ωc/s to obtain

THP (s) =
1

(ωc/1.0313s)
2 + (1/2.9406) (ωc/1.0313s) + 1

× 1

(ωc/0.59703s)
2 + (1/0.7051) (ωc/0.59703s) + 1

=
(1.0313s/ωc)

2

(1.0313s/ωc)
2 + (1/2.9406) (1.0313s/ωc) + 1

× (0.59703s/ωc)
2

(0.59703s/ωc)
2 + (1/0.7051) (0.59703s/ωc) + 1

Odd-Order Chebyshev Filters

For an odd-order Chebyshev low-pass filter of order n, the transfer function can be written
in the form

TLP (s) =
1

s/a(n+1)/2ωc + 1
×
(n−1)/2∏

i=1

1

(s/aiωc)
2 + (1/bi) (s/aiωc) + 1

The constants ai and bi are given by

a(n+1)/2 =
h√
1− h2

for i = (n+ 1) /2

ai =

(
1

1− h2
− sin2 θi

)1/2
for 1 ≤ i ≤ (n− 1) /2

bi =
1

2

(
1 +

1

h2 tan2 θi

)1/2
for 1 ≤ i ≤ (n− 1) /2

where the θi are given by

θi =
2i− 1

n
× 90 ◦ for 1 ≤ i ≤ (n− 1) /2

Example 8 Solve for the transfer function for the 1 dB ripple third-order Chebyshev low-
pass and high-pass filters.

Solution. The parameters ε and h are given by

ε =
(
101/10 − 1

)1/2
= 0.5088

h = tanh

(
1

3
sinh−1

1

0.5088

)
= 0.4430

For n = 3, each transfer function contains one second-order polynomial and one first-order
polynomial. The calculations are summarized as follows:

i θi ai bi
1 30 ◦ 0.9971 2.0177
2 – 0.4942 –
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The low-pass transfer function is given by

TLP (s) =
1

(s/0.4942ωc) + 1
× 1

(s/0.9971ωc)
2 + (1/2.0177) (s/0.9971ωc) + 1

The high-pass function is obtained by replacing s/ωc with ωc/s to obtain

THP (s) =
1

(ωc/0.4942s) + 1
× 1

(ωc/0.9971s)
2 + (1/2.0177) (ωc/0.9971s) + 1

=
(0.4942s/ωc)

(0.4942s/ωc) + 1
× (0.9971s/ωc)

2

(0.9971s/ωc)
2 + (1/2.0177) (0.9971s/ωc) + 1

Elliptic Filter Transfer Functions
The elliptic filter is also known as the Cauer-Chebyshev filter. It is a filter which exhibits
equal ripple in the passband and in the stop band. It can be designed to have a much steeper
roll off than the Chebyshev filter. The approximation to the magnitude squared function of
the elliptic low-pass filter is of the form

|TLP (jω)|2 = K2 1 + ε2R2
n (0)

1 + ε2R2
n (ω/ωc)

where K is the dc gain constant, ε determines the dB ripple, and Rn (ω/ωc) is the rational
Chebychev function. This function has the form

Rn (x) =

n/2∏

i=1

q2i
1− (x/qi)2

1− (qix)2
for n even

= x

(n−1)/2∏

i=1

q2i
1− (x/qi)2

1− (qix)2
for n odd

where 0 < qi < 1. From this definition, it follows that Rn (x) satisfies the following properties:

Rn

(
1

x

)
=

1

Rn (x)
Rn (qi) = 0 Rn

(
1

qi

)
=∞

Rn (0) =

n/2∏

i=1

q2i for n even

= 0 for n odd

Rn (1) = (−1)n/2 for n even

= (−1)(n−1)/2 for n odd

Rn (∞) =

n/2∏

i=1

(−1)i
a2i

for n even

= ∞ for n odd
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It is beyond the scope of this treatment to describe how the qi are specified. For n even,
the transfer function can be put into the form

TLP (s) =

n/2∏

i=1

(s/ciωc)
2 + 1

(s/aiωc)
2 + (1/bi) (s/aiωc) + 1

For n odd, the form is

TLP (s) =
1

s/a(n+1)/2ωc + 1
×
(n−1)/2∏

i=1

(s/ciωc)
2 + 1

(s/aiωc)
2 + (1/bi) (s/aiωc) + 1

These differ from the forms for the Chebyshev filter by the presence of zeros on the jω axis.
That is, TLP (jω) = 0 for ω = ciωc.

Figure 9 shows the plot of |TLP (jv)| for a 4th-order elliptic filter, where v = ω/ωc is
the normalized radian frequency. The filter has a dB ripple of 0.5 dB for v ≤ 1. Like the
Chebyshev filters, the gain ripples up from its dc value for the even order filter. There are
two zeros in the response, one at v = 1.59 and the other at v = 3.48. For v > 1.5, the gain
ripples between 0 and 0.0153. As v becomes large, the gain approaches the value 0.0153
which is 36.3 dB down from the dc value. Odd order elliptic filters have the property that
the gain ripples down from the dc value and approaches 0 as v becomes large.
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Figure 9 Magnitude response versus normalized frequency for the example elliptic filter.

The passband for the elliptic filter is the band defined by ω ≤ ωc. Like the Chebyshev
filters, the dB ripple is defined in this band. The even-order filters ripple up from the dc gain,
whereas the odd-order filters ripple down. At ω = ωc, the gain of an even-order filter is equal
to the dc gain, whereas the gain of an odd-order filter is down by an amount equal to the dB
ripple. For ω > ωc, the gain decreases rapidly and is equal to zero at the zero frequencies of
the transfer function. Between adjacent zeros, the gain peaks up in an equal ripple fashion,
i.e. with equal values at the peaks. Let the gain at the peaks between adjacent zeros have a
dB level that is down from the dc gain by Amin dB. The stop band frequency ωs is defined as
the frequency between the cutoff frequency ωc and the first zero frequency at which the gain
is down by Amin dB. For ω > ωs, the gain is down from the dc level by Amin dB or more.

The three parameters which define the alignment of an elliptic filter are the dB ripple in
the passband, the ratio ωs/ωc of the stop band frequency to the cutoff frequency, and the
minimum dB attenuation Amin in the stop band. The tables below give the values of the ai,
bi, and ci in the elliptic transfer functions for 0.5 dB ripple filters having ωs/ωc values of 1.5,
2.0, and 3.0 for orders n = 2 through n = 5.
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Elliptic Alignments for ωs/ωc = 1.5

n Amin i ai bi ci
2 8.3 1 1.2662 1.2275 1.9817
3 21.9 1 1.0720 2.3672 1.6751

2 0.76695
4 36.3 1 1.0298 4.0390 1.5923

2 0.68690 0.74662 3.4784
5 50.6 1 1.0158 6.2145 1.5574

2 0.75895 1.3310 2.3319
3 0.42597

Elliptic Alignments for ωs/ωc = 2.0

n Amin i ai bi ci
2 13.9 1 1.2617 1.0134 2.7321
3 31.2 1 1.0717 1.9924 2.2701

2 0.69212
4 48.6 1 1.0308 3.4228 2.1432

2 0.64056 0.72416 4.9221
5 66.1 1 1.0169 5.2811 2.0893

2 0.72457 1.2481 3.2508
3 0.39261

Elliptic Alignments for ωs/ωc = 3.0

n Amin i ai bi ci
2 21.5 1 1.2471 0.91893 4.1815
3 42.8 1 1.0703 1.8159 3.4392

2 0.65236
4 64.1 1 1.0312 3.1267 3.2335

2 0.61471 0.71264 7.6466
5 85.5 1 1.0174 4.8296 3.1457

2 0.70455 1.2056 5.0077
3 0.37452

The Thompson Phase Approximation
Let vi (t) be the input voltage to a filter. If the output voltage is given by vo (t) = vi (t− τ ),
the filter is said to introduce a time delay of τ seconds to the signal. The transfer function
of such a filter is given by

T (s) =
Vo (s)

Vi (s)
= e−τs

For s = jω, the phase of the transfer function in radians is given by

ϕ (ω) = −ωτ = −2πfτ
Thus the phase lag through the filter is directly proportional to the frequency. A filter
having such a phase function is called a linear-phase filter. The Thompson approximation
is a low-pass filter which has a phase function that approximates a linear-phase function.
It can only be realized as a low-pass filter. This is because a time delay cannot be realized
with, for example, a high-pass filter. The Thompson filter is also called a Bessel filter. This
is because Bessel polynomials are used in obtaining the filter coefficients.

Given the phase function ϕ (ω) for any filter, there are two delays which can be defined.
These are the phase delay τϕ and the group delay τ g. These are given by

τϕ = −
ϕ (ω)

ω
= −ϕ (ω)

2πf

τ g = −
dϕ (ω)

dω
= − 1

2π

dϕ (ω)

df

These are equal for a linear-phase filter.
Let n be the order of the filter. For n even, the transfer function can be put into the

form

TLP (s) =

n/2∏

i=1

1

(s/aiωc)
2 + (1/bi) (s/aiωc) + 1
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For n odd, the form is

TLP (s) =
1

s/a(n+1)/2ωc + 1
×
(n−1)/2∏

i=1

1

(s/aiωc)
2 + (1/bi) (s/aiωc) + 1

where the time delay of the filter is given by τ = 1/ωc. It is beyond the scope of the treatment
here to describe how the ai and bi are obtained. The tables below give the values for n = 1
to n = 6. Also given is the ratio of the −3 dB frequency f3 to the cutoff frequency fc.

Thompson Alignments for 1 ≤ n ≤ 4
n f3/fc i ai bi
1 1 1 1.0
2 1.3617 1 1.7321 0.57735
3 1.7557 1 2.5415 0.69105

2 2.3222
4 2.1139 1 3.0233 0.52193

2 3.3894 0.80554

Thompson Alignments for 5 ≤ n ≤ 6
n f3/fc i ai bi
5 2.4274 1 3.7779 0.56354

2 4.2610 0.91648
3 3.64674

6 2.8516 1 4.3360 0.51032
2 4.5665 0.61119
3 5.1492 1.0233

Figure 10 shows the plot of |T (j2πf)| as a function of frequency for the 4th-order Thomp-
son filter for the case ωc = 1 rad/s. This choice gives a delay of 1 second. The −3 dB
frequency of the filter is f3 = 2.1139ω0/2π = 0.3364Hz. If the −3 dB frequency is multiplied
by a constant, the delay time is divided by that constant. Fig. 11 shows the phase response
of the filter. The phase delay is shown plotted in Fig. 12. It can be seen from this figure
that the delay is approximately equal to 1 second up to the −3 dB frequency of the filter.
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Figure 10 Plot of |T (j2πf)| versus f .

Second-Order Filter Topologies
Sallen-Key Low-Pass Filter

Figure 13 shows the circuit diagram of the second-order Sallen-Key low-pass filter. The
voltage-gain transfer function is given by

Vo
Vi
= K

1

(s/ω0)
2 + (1/Q) (s/ω0) + 1

where K is the dc gain constant, ω0 is the radian resonance frequency, and Q is the quality
factor. These are given by

K = 1 +
R4

R3
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Figure 11 Plot of the phase in degrees of T (j2πf) versus f .
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Figure 12 Plot of the phase delay in seconds of T (j2πf) versus f .
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ω0 =
1√

R1R2C1C2

Q =

√
R1R2C1C2

(1−K)R1C1 + (R1 +R2)C2

Figure 13 Second-order Sallen-Key low-pass filter.

Special Case 1

Let K = 1 (R4 a short and R3 an open). If R1, R2, ω0, and Q are specified, C1 and C2 are
given by

C1 =
Q

ω0

(
1

R1
+
1

R2

)

C2 =
1

Qω0 (R1 +R2)

The filter is often realized with R1 = R2.

Special Case 2

Capacitor values are often difficult to obtain. It is possible to specify C1 and C2 and calculate
the resistors. Let K = 1 (R4 a short and R3 an open). If C1, C2, ω0, and Q are specified,
R1 and R2 are given by

R1, R2 =
1

2Qω0C2

[

1±
√
1− 4Q2

C2
C1

]

Any value for the ratio C2/C1 can be chosen provided 4Q2C2/C1 ≤ 1. Note that the values
for R1 and R2 are interchangeable.

Example 9 Design a unity-gain second-order Sallen-Key low-pass filter with f0 = 1kHz
and Q = 1/

√
2.

Solution. Let C1 = 0.1µF and C2 = 0.022µF. R1 and R2 are given by

R1, R2 =

√
2

2× 2π1000× 0.022× 10−6

[

1±
√

1− 4× 1
2
× 0.22

]

= 1.29 kΩ and 8.94 kΩ

Either value may be assigned to R1. The other value is then assigned to R2.
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Special Case 3

Let R1 = R2 = R and C1 = C2 = C. If C, ω0, and Q are specified, R and K are given by

R =
1

ω0C

K = 3− 1

Q

Infinite-Gain Multi-Feedback Low-Pass Filter

Figure 14 shows the circuit diagram of the second-order infinite-gain multi-feedback low-pass
filter. The voltage-gain transfer function is given by

Vo
Vi
= −K 1

(s/ω0)
2 + (1/Q) (s/ω0) + 1

where K is the dc gain constant, ω0 is the radian resonance frequency, and Q is the quality
factor. These are given by

K =
R3
R1

ω0 =
1√

R2R3C1C2

Q =

√
R2R3C1/C2

R2 +R3 +R2R3/R1

Figure 14 Second-order infinite gain multi-feedback low-pass filter.

Special Case 1

Let R1 = R2 = R3 so that K = −1. If R, ω0, and Q are specified, C1 and C2 are given by

C1 =
Q

ω0

(
2

R1
+
1

R2

)

C2 =
1

Qω0 (R1 + 2R2)

The filter is often designed with R1 = R2.
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Special Case 2

Capacitor values are often difficult to obtain. It is possible to specify C1 and C2 and calculate
the resistors. Let K = −1 (R3 = R1). If C1, C2, ω0, and Q are specified, R1/2 and R2 are
given by

R1

2
, R2 =

1

4Qω0C2

[

1±
√
1− 8Q2

C2
C1

]

Any value for the ratio C2/C1 can be chosen provided 8Q2C2/C1 ≤ 1. Note that the values
for R1/2 and R2 are interchangeable.

Example 10 Design a unity-gain second-order infinite-gain multi-feedback low-pass filter

with f0 = 1 kHz and Q = 1/
√
2.

Solution. Let C1 = 0.1µF and C2 = 0.01µF. R1/2 and R2 are given by

R1
2
, R2 =

√
2

4× 2π1000× 0.01× 10−6

[

1±
√
1− 8× 1

2
× 0.1

]

= 1.27 kΩ and 9.99 kΩ

The filter can be designed either with R1 = 2.54 kΩ and R2 = 9.99 kΩ or with R1 = 20 kΩ
and R2 = 1.27 kΩ.

Second-Order Low-Pass Filter -3dB Cutoff Frequency
The −3 dB radian cutoff frequency ω3 of the filters in Figures 13 and 14 is given by

ω3 = ω0




(
1− 1

2Q2

)
+

√(
1− 1

2Q2

)2
+ 1





1/2

Sallen-Key High-Pass Filter

Figure 15 shows the circuit diagram for the second-order Sallen-Key high-pass filter. The
voltage-gain transfer function is given by

Vo
Vi
= K

(s/ω0)
2

(s/ω0)
2 + (1/Q) (s/ω0) + 1

where K is the asymptotic high-frequency gain, ω0 is the resonance frequency, and Q is the
quality factor. These are given by

K = 1 +
R4

R3

ω0 =
1√

R1R2C1C2

Q =

√
R1R2C1C2

R1 (C1 + C2) + (1−K)R2C2
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Figure 15 Second-order Sallen-Key high-pass filter.

Special Case 1

Let C1 = C2 = C and K = 1 (RF a short and R3 an open). If C, ω0, and Q are specified,
R1 and R2 are given by

R1 =
1

2Qω0C

R2 =
2Q

ω0C

Special Case 2

Let R1 = R2 = R and C1 = C2 = C. If R, ω0, and Q are specified, C and K are given by

C =
1

ω0R

K = 3− 1

Q

Infinite-Gain Multi-Feedback High-Pass Filter

The second-order infinite-gain multi-feedback high-pass filter is not a stable circuit in prac-
tice. This is because its input node connects through two series capacitors to the V− node of
the op amp. At high frequencies, the input node becomes shorted to a virtual ground. This
can cause oscillation problems in the source that drives the filter. Therefore, this topology
is not recommended.

Second-Order High-Pass Filter -3dB Cutoff Frequency
The −3 dB lower radian cutoff frequency ω3 for the circuit in Figure 15 is given by

ω3 = ω0




(
1− 1

2Q2

)
+

√(
1− 1

2Q2

)2
+ 1





−1/2

Sallen-Key Band-Pass Filter

Figure 16 shows the circuit diagram of the second-order Sallen-Key band-pass filter. The
voltage-gain transfer function is given by

Vo
Vi
= K

(1/Q) (s/ω0)

(s/ω0)
2 + (1/Q) (s/ω0) + 1
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where K is the gain at resonance, ω0 is the resonance frequency, and Q is the quality factor.
These are given by

K =
R2

R1 +R2
× K0R3C2
(R1‖R2) (C1 + C2) +R3C2 [1−K0R1/ (R1 +R2)]

ω0 =
1

√
(R1‖R2)R3C1C2

Q =

√
(R1‖R2)R3C1C2

(R1‖R2) (C1 + C2) +R3C2 [1−K0R1/ (R1 +R2)]

where K0 is the gain from the non-inverting input of the op amp to the output. This is given
by

K0 = 1 +
R5

R4

Figure 16 Second-order Sallen-Key band-pass filter.

Special Case

Let R1 = R2 = R3 = R and C1 = C2 = C. If Q, ω0, and C are specified, R, K0 and K are
given by

R =

√
2

ω0C
K0 = 4−

1

Q2
K = 4Q2 − 1

Infinite-Gain Multi-Feedback Band-Pass Filter

Figure 17 shows the circuit diagram of the second-order infinite-gain multi-feedback band-
pass filter. The voltage-gain transfer function is given by

Vo
Vi
= −K (1/Q) (s/ω0)

(s/ω0)
2 + (1/Q) (s/ω0) + 1

where K is the gain at resonance, ω0 is the resonance frequency, and Q is the quality factor.
These are given by

K =
R3C1

R1 (C1 + C2)

ω0 =
1

√
(R1‖R2)R3C1C2

Q =

√
R3C1C2/ (R1‖R2)

C1 + C2
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Figure 17 Second-order infinite gain multi-feedback band-pass filter.

Special Case

Let C1 = C2 = C. For a specified K, ω0, and Q, R1, R2, and R3 are given by

R1 =
Q

Kω0C
R2 =

R1
(2Q2/K)− 1 R3 =

2Q

ω0C

Second-Order Band-Pass Filter Bandwidth

The −3 dB bandwidth ∆ω3 of a second-order band-pass filter is related to the resonance
frequency ω0 and the quality factor Q by

∆ω3 =
ω0
Q

Let the lower and upper −3 dB cutoff frequencies, respectively, be denoted by ωa and ωb.
These frequencies are related to the bandwidth and the quality factor by

∆ω3 = ωb − ωa

ω0 =
√
ωaωb

A Biquad Filter

A biquadratic transfer function, or biquad for short, is a transfer function that is the ratio
of two second-order polynomials. It has the form

TBQ (s) = K
(s/ωn)

2 + (1/Qn) (s/ωn) + 1

(s/ωd)
2 + (1/Qd) (s/ωd) + 1

where K, ωn, Qn, ωd, and Qd are constants. The function can be thought of as the sum of
three transfer functions: a low-pass, a band-pass, and a high-pass. For the case Qn → ∞,
the zeros are on the jω axis and the transfer function exhibits a notch at ω = ωc, i.e.
TBQ (jωn) = 0. Band-reject filters and elliptic filters have biquad terms of this form.

In general, the simplest biquad circuits to realize are the ones which require more than
one op amp. Compared to the single op amp biquads, these circuits can be realized with
only one capacitor value and they are usually easier to tweak. Fig. 18 shows the circuit
diagram of an example three op amp biquad. For this circuit, we can write

Va = −
(
R4‖

1

Cs

)(
Vi
R3

+
Vb
R

)

Vo = −R
(
Va
R
+

Vi
R2

)

Vb =
−1
Cs

(
Vo
R
+

Vi
R1

)
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Figure 18 Biquad filter.

Although these equations look deceptively simple, a lot of algebra is required to solve for
Vo/Vi. The solution is of the form of TBQ (s) given above. For a specified K, ωd, Qd, ωn, Qn,
and C, the design equations for the circuit are

R =
1

ωdC

R1 =
R

K

R2 =

(
ωn
ωd

)2
R1

R3 =
ωdR2

ωd/Qd − ωn/Qn

R4 = QdR

Example 11 Design a third-order elliptic low-pass filter having 0.5 dB ripple, a notch in its
transfer function at f = 15, 734Hz, a stop-band attenuation of 21.9 dB, and a stop band to
cutoff frequency ratio of fs/fc = 1.5. The gain at dc is to be unity.

Solution. From the fc/fs = 1.5 Elliptic filter table, the transfer function is given by

F (s) =
1

s/0.76695ωc + 1
× (s/1.6751ωc)

2 + 1

(s/1.0720ωc)
2 + (1/2.3672) (s/1.0720ωc) + 1

where ωc is the cutoff frequency. The transfer function has a null at ω = 1.6751ωc. For the
null to be at 15, 734Hz, we have ωc = 2π15734/1.6751 = 59, 017. Thus the transfer function
is

F (s) =
1

s/45263 + 1
× (s/98859)2 + 1

(s/63266)2 + (1/2.367) (s/63266) + 1

The biquadratic term can be realized with the three op amp biquad. Let C = 1000 pF.
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The element values are given by

R =
1

63266C
= 15.81 kΩ

R1 =
R

1
= 15.81 kΩ

R2 =

(
98859

63266

)2
R1 = 38.60 kΩ

R3 =
63266R2

63266/2.367− 98859/∞ = 2.367R2 = 91.37 kΩ

R4 = 2.367R = 37.42 kΩ

The first-order term can be realized as a passive filter at either the input or the output of
the biquad. The preferred realization does not require a buffer stage for isolation. One way
of accomplishing this is to divide R1, R2, and R3 each into two series resistors, where the
ratio of the resistors in each pair is the same. By voltage division, the voltage at the node
where the resistors in each pair connect is the same for the three pairs. Thus these three
nodes can be connected together. A capacitor to ground from this node then realizes the
first-order term.

Let the ratio of the resistors in each pair be 0.33/0.67. Divide R1 into series resistors
of values 0.33R1 = 5.217 kΩ and 0.67R1 = 10.59 kΩ. Similarly, divide R2 into resistors
of values 0.33R2 = 12.74 kΩ and 0.67R2 = 25.86 kΩ and divide R3 into resistors of values
0.33R3 = 30.15 kΩ and 0.67R3 = 61.21 kΩ. Let the smaller of the resistors in each pair
connect to the Vi node. These three resistors are in parallel in the circuit and can be
replaced with a single resistor of value 5.217‖12.74‖30.15 = 3.297 kΩ. The time constant
for the capacitor which sets the single-pole term in the transfer function is RpC, where
Rp = 3.297‖10.59‖25.86‖61.21 = 2.209 kΩ. Thus C = 1/ (45263× 2209) = 0.01µF. The
completed circuit is given in Fig. 19. The magnitude response is shown in Fig. 20.

Figure 19 Completed elliptic filter.
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Figure 20 Magnitude response versus frequency in kHz.

A Second Biquad Filter

A second biquad filter that has its zeros on the jω axis is shown in Fig. 21. The following
equations can be written for the circuit:

Va = − Vi
R1C1s

− Vo
R3C1s

Vb = −
R4
R5

Vi

Vc =

(
Va
R2

+ VbC2s

)(
R2‖

1

C2s

)
Vo =

(
1 +

R7
R6

)
Vc

These equations can be solved for Vo/Vi to obtain

Vo
Vi
= −K (s/ωn)

2 + 1

(s/ωd)
2 + (1/Qd) (s/ωd) + 1

where

K =
R3
R1

ωn =

√
R5

R1R2R4C1C2

ωd =

√
1 +R7/R6
R2R3C1C2

Qd =

√(
1 +

R7

R6

)
R2C2
R3C1

Figure 21 A second biquad circuit.
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Because there are more element values than equations that relate them, values must be
assigned to some of the elements before the others can be calculated. Let values for C1, C2,
K, R5, and 1 +R7/R6 be specified. The other element values are given by

R1 =
1 +R7/R6
KQdC1ωd

R2 =
Qd

ωdC2
R3 = KR1 R4 = K

(
ωd
ωn

)2
R5

1 + R7/R6

Third-Order Sallen-Key Filter Circuits
The filter circuits given in this section consist of a first-order stage in cascade with a second-
order stage with no buffer amplifier isolating the two stages. The transfer functions are
difficult to derive.

Low-Pass Filters

Figure 22 Third-order Sallen-Key low-pass filter.

Figure 22 shows the circuit diagram of a third-order unity-gain Sallen-Key low-pass filter.
For R1 = R2 = R3 = R, it can be shown that the transfer function for this filter is given by

Vo
Vi
=

1

R3C1C2C3s3 + 2R2C1 (C2 + C3) s2 +R (3C1 + C3) s+ 1

For a cutoff frequency ωc, the element values for Butterworth and Chebyshev filters are given
in the following table. The Butterworth filters are 3 dB down at :ωc whereas the Chebyshev
filters are down by an amount equal to the dB ripple.

Alignment R1 R2 R3 C1 C2 C3
Butterworth R R R 0.20245/Rωc 3.5465/Rωc 1.3926/Rωc

0.01 dB Chebyshev R R R 0.07130/Rωc 2.5031/Rωc 0.8404/Rωc
0.03 dB Chebyshev R R R 0.07736/Rωc 3.3128/Rωc 1.0325/Rωc
0.10 dB Chebyshev R R R 0.09691/Rωc 4.7921/Rωc 1.3145/Rωc
0.30 dB Chebyshev R R R 0.08582/Rωc 7.4077/Rωc 1.6827/Rωc
1.0 dB Chebyshev R R R 0.05872/Rωc 14.784/Rωc 2.3444/Rωc

High-Pass Filters

Figure 23 shows the circuit diagram of a third-order unity-gain Sallen-Key high-pass filter.
For C1 = C2 = C3 = C, it can be shown that the transfer function for this filter is given by

Vo
Vi
=

R1R2R3C
3s3

R1R2R3C3s3 +R2 (R1 + 3R3)C2s2 + 2 (R2 +R3)Cs+ 1

For a cutoff frequency ωc, the element values for Butterworth and Chebyshev filters are given
in the following table. The Butterworth filters are 3 dB down at :ωc whereas the Chebyshev
filters are down by an amount equal to the dB ripple.
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Figure 23 Third-order Sallen-Key high-pass filter.

Alignment R1 R2 R3 C1 C2 C3
Butterworth 4.93949/ωcC 0.28194/ωcC 0.71808/ωcC C C C

0.01 dB Chebyshev 10.9130/ωcC 0.39450/ωcC 1.18991/ωcC C C C
0.03 dB Chebyshev 10.09736/ωcC 0.30186/ωcC 0.96852/ωcC C C C
0.1 dB Chebyshev 10.3188/ωcC 0.20868/ωcC 0.76075/ωcC C C C
0.3 dB Chebyshev 11.65230/ωcC 0.13499/ωcC 0.59428/ωcC C C C
1.0 dB Chebyshev 17.0299/ωcC 0.06764/ωcC 0.42655/ωcC C C C

Impedance Transfer Functions
RC Network

The impedance transfer function for a two-terminal RC network which contains only one
capacitor and is not an open circuit at dc can be written

Z = Rdc
1 + τ zs

1 + τps

where Rdc is the dc resistance of the network, τ p is the pole time constant, and τ z is the
zero time constant. The pole time constant is the time constant of the network with the
terminals open circuited. The zero time constant is the time constant of the network with the
terminals short circuited. Figure 24(a) shows the circuit diagram of an example two-terminal
RC network. The impedance transfer function can be written by inspection to obtain

Z = R1
1 +R2Cs

1 + (R1 +R2)Cs

Figure 24 Example RC and RL impedance networks.

RL Network

The impedance transfer function for a two-terminal RL network which contains only one
inductor and is not a short circuit at dc can be written

Z = Rdc
1 + τ zs

1 + τps
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where Rdc is the dc resistance of the network, τ p is the pole time constant, and τ z is the
zero time constant. The pole time constant is the time constant of the network with the
terminals open circuited. The zero time constant is the time constant of the network with the
terminals short circuited. Figure 24(b) shows the circuit diagram of an example two-terminal
RL network. The impedance transfer function can be written by inspection to obtain

Z = R1‖R2
1 + (L/R2) s

1 + [L/ (R1 +R2)] s

Voltage Divider Transfer Functions
RC Network

The voltage-gain transfer function of a RC voltage-divider network containing only one
capacitor and having a non-zero gain at dc can be written

Vo
Vi
= k

1 + τ zs

1 + τ ps

where k is the dc gain (C an open circuit), τ p is the pole time constant, and τ z is the zero
time constant. The pole time constant is the time constant of the network with Vi = 0 and
Vo open circuited. The zero time constant is the time constant of the network with Vo = 0
and Vi open circuited. Figure 25(a) shows the circuit diagram of an example RC network.
The voltage-gain transfer function can be written by inspection to obtain

Vo
Vi
=

R2 +R3

R1 +R2 +R3
× 1 + (R2‖R3)Cs

1 + [(R1 +R2) ‖R3]Cs

Figure 25(b) shows the circuit diagram of a second example RC network. The voltage-gain
transfer function can be written by inspection to obtain

Vo
Vi
=

R3
R1 +R3

× 1 + (R1 +R2)Cs

1 + [(R1‖R3) +R2]Cs

Figure 25 Example RC voltage divider networks.

High-Pass RC Network

The voltage-gain transfer function of a high-pass RC voltage-divider network containing only
one capacitor can be written

Vo
Vi
= k

τps

1 + τ ps

where k is the infinite frequency gain (C a short circuit) and τ p is the pole time constant.
The pole time constant is calculated with Vi = 0 and Vo open circuited. Figure 25(c) shows
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the circuit diagram of a third example RC network. The voltage-gain transfer function can
be written by inspection to obtain

Vo
Vi
=

R2
R1 +R2

× (R1 +R2)Cs

1 + (R1 +R2)Cs

RL Network

The voltage-gain transfer function of a RL voltage-divider network containing only one
inductor and having a non-zero gain at dc can be written

Vo
Vi
= k

1 + τ zs

1 + τ ps

where k is the zero frequency gain (L a short circuit), τp is the pole time constant, and τ z
is the zero time constant. The pole time constant is the time constant of the network with
Vi = 0 and Vo open circuited. The zero time constant is the time constant of the network
with Vo = 0 and Vi open circuited. Figure 26(a) shows the circuit diagram of an example
RL network. The voltage-gain transfer function can be written by inspection to obtain

Vo
Vi
=

R2
R1 +R2

× 1 + [L/ (R2‖R3)] s
1 + (L/ [(R1 +R2) ‖R3]) s

Figure 26(b) shows the circuit diagram of a second example RL network. The voltage-gain
transfer function can be written by inspection to obtain

Vo
Vi
=

R3
R1 +R3

× 1 + (L/R1) s

1 + (L/ [R1‖ (R2 +R3)]) s

Figure 26 Example RL voltage divider circuits.

High-Pass RL Network

The voltage-gain transfer function of a high-pass RL voltage-divider network containing only
one inductor can be written

Vo
Vi
= k

τps

1 + τ ps

where k is the infinite frequency gain (L an open circuit) and τp is the pole time constant.
The pole time constant is calculated with Vi = 0 and Vo open circuited. Figure 26(c) shows
the circuit diagram of a third example RL network. The voltage-gain transfer function can
be written by inspection to obtain

Vo
Vi
=

R2
R1 +R2

× [L/ (R1‖R2)] s
1 + [L/ (R1‖R2)] s
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