

A Novel and Fast Method for Characterizing Noise Based PCMOS Circuits

Anshul Singh¹, Satyam Mandavalli¹, Vincent J Mooney^{2,3,4}, Keck Voon Ling³ 20th July 2011

¹CVEST, International Institute of Information Technology, Hyderabad, India
 ²School of ECE, Georgia Institute of Technology, Georgia, USA
 ³School of EEE, Nanyang Technological University, Singapore
 ⁴School of Computer Engineering, Nanyang Technological University, Singapore

Introduction

- Prior Work
- A Quick Method for Characterizing PCEs
 - Noise Characterization
 - Dynamic Noise Analysis
 - Error-Rate Calculation
 - Simulation Results
- Conclusion

- Decreasing feature size of CMOS transistors
 - Increasing statistical behavior
- Growing energy concerns
- Probabilistic Computing
 - Allows occasional errors in computation
 - Trades reliability with the traditional three parameters of circuit design: energy, speed and area.

- The most important information about probabilistic circuits: output error-rate.
- For systematic design and performance evaluation of probabilistic circuits quick and accurate errorrate prediction is crucial.
- General idea for prediction methodologies:
 - Obtain error-rates of constituent probabilistic circuit elements, process known as characterization of probabilistic circuit elements.
 - Use mathematics to model error generation and propagation mechanisms through circuit elements.

- Introduction
- Prior Work
- A Quick Method for Characterizing PCEs
 - Noise Characterization
 - Dynamic Noise Analysis
 - Error-Rate Calculation
 - Simulation Results
- Conclusion

Symposium 2011 Modeling Future Noisy Probabilistic Circuit Elements

A noisy probabilistic circuit element is modeled

 by adding equivalent noise sources at the outputs of the deterministic version of the circuit element or nonnoisy circuit element*.

* P. Korkmaz, B. E. S. Akgul, L. N. Chakrapani, and K. V. Palem, "Advocating noise as an agent for ultra low-energy computing: Probabilistic CMOS devices and their characteristics," Japanese Journal of Applied Physics, vol. 45, pp. 3307–3316, Apr. 2006.

Error-Rate Prediction Methodology: The Cascade Math Model

- Lau et al. have come up with a methodology to quickly predict the error-rates of cascade structure of blocks*.
- The methodology is based on
 - Knowing each block's output error-rate
 - Evaluation of mathematical equations that model the dynamics of error generation and propagation across the blocks.

Cascade Structure of Blocks

*M. Lau, K. V. Ling, A. Bhanu, and V. J. Mooney III, "Error Rate Prediction for Probabilistic Circuits with More General Structures", The 16th Workshop on Synthesis And System Integration of Mixed Information technologies" (SASIMI2010), 18-19 October, 2010, Taipei, Taiwan, pp.220-225

Characterizing PCEs – The Three asOED Symposium 2011 Stage Model*

Experimental Setup

*Anshul Singh, Arindam Basu, Keck-Voon Ling and Vincent J. Mooney III, "Modeling multi-output filtering effects in PCMOS," VLSI-DAT, April 25-27, Hsinchu, Taiwan, pp. 414-417, 2011.

- Introduction
- Prior Work

A Quick Method for Characterizing PCEs

- Noise Characterization
- Dynamic Noise Analysis
- Error-Rate Calculation
- Simulation Results
- Conclusion

Symposium 2011 Characterizing PCEs

- The characterization procedure discussed, requires simulation of the three stage model for large number of samples.
 - computationally intensive, requiring large computation time
- Characterizing PCE.
 - Measure of the number of actual errors that are caused at the output of PCE.
 - Looking at the characterization procedure from the point of view of Filter circuit's
 - Noise Tolerance of filter circuit

- Noise margin gives the measure of noise amplitude that can be tolerated by a circuit without affecting its correct operation
- Two types of noise analyses
 - Static Noise Analysis
 - treats noise as a DC signal
 - Dynamic Noise Analysis
 - noise margin for pulses

Symposium 2011

Static and Dynamic Noise Margin

um 2011 Static vs. Dynamic Noise Margin

Static and Dynamic Noise Margin of an Inverter*

* 90nm Synopsys generic library, operating at 0.8V

Symposium 2011 A New Approach

- Perform Dynamic Noise Analysis (DNA) on the three stage model of a PCE through SPICE simulation
 - computationally very cheap.
- Perform a new statistical analysis on time domain noise, structural analysis, to calculate error-rate from DNA on FCs of the three stage model of PCEs.
- Combine the above two information to obtain error-rates of PCEs.

Symposium 2011 Structural Analysis of Noise

- Static noise margin
 - Considers only amplitude of noise before declaring a potential error creator.
 - Amplitude distribution of time domain noise.
- Dynamic Noise Analysis
 - Takes into account the amplitude and the duration/width of noise pulses
- Information required from noise for error-rate calculation using DNA
 - Pulse Amplitude distribution
 - Pulse Width distribution
 - Amplitude-Width relation

A Zero Mean Gaussian Noise

Noise is assumed to be continuous and linearly varying with time between two data points

- Pulse Amplitude Probability Density Function (PAPDF) gives the probability that the amplitude of a pulse falls within certain amplitude range.
- Since the PAPDF of Gaussian noise follows a Gaussian distribution, it is given by function

$$a(V) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(\frac{(V-V_0)^2}{2\sigma^2})}$$

Pulse Amplitude Probability Density Function of Zero Mean Gaussian Noise

Pulse Width

- the duration of a pulse at some reference voltage.
- width distribution is defined for a reference voltage.

- Pulse Width Probability Density Function (PWPDF) gives the probability that the width of a pulse falls within a certain range.
- Parameters affecting PWPDF
 - RMS value of noise
 - Reference Voltage

Dependence of PWPDF on RMS value

Dependence of PWPDF on Reference voltage

 Using curve fitting techniques to obtain the PWPDF, we get

$$w(W) = ae^{-(W-b)^2/c^2}$$

- Parameters a, b and c are constants for a particular RMS value and reference voltage, and W is the variable for width.
- Parameters a, b and c have a polynomial relation with RMS and reference voltage.

Joint Pulse Amplitude Width Density Function

- JPAWPDF is a function which gives the probability of a noise pulse to lie within a certain amplitude range and a certain width range.
 - sufficient information required to calculate errorrate.
- Obtaining JPAWPDF is a problem.
 - Either analytically from the amplitude and width distribution or using curve fitting techniques.

Symposium 2011 Amplitude-Width Relation: The Graphical Approach

The amplitude-width relation relates the amplitudes of noise pulses with their widths.

Amplitude-Width Distribution of Gaussian Noise

- Noise pulses with smaller widths have maximum amplitudes below a certain bound.
- For larger widths such a condition does not hold true as the distribution becomes random.

Maximum Amplitude for each Width

Symposium 2011 Max Amplitude per Width (MAW)

- For lower widths the max-amplitude shows a strong correlation with widths but becomes independent for higher widths.
- Parameters affecting MAW
 - RMS value of noise
 - Reference Voltage
- Expression obtained using curve fitting techniques

m(W) = pW + q

• Constants p and q are polynomial function of RMS value and reference voltage, W is the variable for width

Dynamic Noise Analysis (DNA)

- DNA gives the noise tolerance of logic gates
 - Considers noise pulse amplitude and width.
- DNA provides: V_{IL} and V_{IH} curves.
 - V_{IL} curve: the maximum voltage that can be considered as logic 0 by the gate when the input is going from logic 0 to 1 for different pulse widths.
 - V_{IH} curve: the minimum voltage that can be considered as logic 1 by the gate when the input is going from logic 1 to 0 for different pulse widths.

V_{IL} and V_{IH} Curves for an Inverter Operating at Different Voltages

- Positive noise pulses create 0 to 1 errors and negative noise pulses create 1 to 0 errors
 - 0(1) to 1(0) error: a signal which is at logic 0(1) but is treated as a 1(0) because of the noise present.
- A positive noise pulse, with width W_P, should have amplitude higher than that specified by V_{IL} curve for width W_P to potentially create a 0 to 1 error.
- To create a 1 to 0 error a negative noise pulse, with width W_N , should have amplitude lower than that specified by $V_{IH} H_{signal}$ (V_{IH} minus H_{signal}) for width W_N .

 V_{IL} and $V_{IH} - H_{signal}$ Curves

30

Symposium 2011 Obtaining V_{IL} and V_{IH} Curves

- V_{IL} and V_{IH} curves are obtained by SPICE simulations of logic gates.
 - Unity gain method
- V_{IL} and V_{IH} curves are obtained from Voltage Transfer Characteristics (VTC) of gates.
- V_{IL} and V_{IH} curves of a logic gate depends upon
 - The logic gate
 - The load of the logic gate
 - The driving gate

- Simulate the three stage model with a triangular input.
- Obtain VTC of logic gate using transient analysis.

Experimental Setup

Unity Gain Approach for an Inverter

Symposium 2011 Symposium 2011 Voltage Transfer Characteristics for Different Widths

Voltage Transfer Curve for Different Pulse Widths for an Inverter

Symposium 2011 Representation of V_{IL} and V_{IH} Curve

• V_{IL} and V_{IH} curves are represented by function $V_{IL}(W)$ and $V_{IH}(W)$,

$$V_{IL}/V_{IH}(W) = \frac{eW+f}{W+g}$$

 Parameters e, f and g are obtained from curve fitting and W is the variable for width.

Error-Zone (0 to 1Errors)

$$\mathbf{e}_{1}^{\mathsf{H}} = \sum_{\mathbf{W}_{\mathsf{C}}^{\mathsf{H}}+1}^{\mathbf{W}_{\mathsf{S}}^{\mathsf{H}}} [w(W) * \int_{V_{\mathsf{H}}(W)}^{m(W)} a(V) dV]$$

$$e_{2}^{H} = \sum_{W_{S}^{H}+1}^{W_{max}} [W(W) * \int_{V_{IL}(W)}^{\infty} a(V) dV]$$

 $e^{H} = e_{1}^{H} + e_{2}^{H}$

- w(W) = PWPDF
- a(V) = PAPDF
- $V_{IL}(W) = V_{IL}$ curve

- $W_c^H = crossover width$
- W_s^H = max correlation width
- W_{max} = max width

FC: inverter, NAND, NOR, Full Adder

V_{IL} and V_{IH} Curves for Various Logic Gates

			HSPIC	E Simulation	1		Prediction									
RMS		0.2 V			0.3 V			0.2 V		0.3 V						
VDD Circbit Element	0.8 V	0.9 V	1.0V	0.8 V	0.9 V	1.0 V	0.8 V	0.9 V	1.0 V	0.8 V	0.9 V	1.0 V				
Inverter	0.0109	0.0052	0.0022	0.0647	0.0452	0.0305	0.0113	0.0059	0.0024	0.0662	0.0468	0.0317				
NAND	0.0112	0.0054	0.0026	0.0648	0.0454	0.0309	0.0117	0.0062	0.0030	0.0671	0.0473	0.0321				
NOR	0.0105	0.0052	0.0023	0.0639	0.0449	0.0300	0.0112	0.0056	0.0025	0.0658	0.0464	0.0311				
FA Carry (cin- cout')	0.0065	0.0030	0.0013	0.0519	0.0356	0.0235	0.0069	0.0033	0.0014	0.0536	0.0369	0.0245				
FA Sum (cin-sum')	0.0047	0.0021	0.0009	0.0445	0.0306	0.0202	0.0050	0.0023	0.0010	0.0457	0.0324	0.0210				

Average relative deviation = 6%

- Using the Cascade Math Model and the results obtained from the new characterization procedure.
- Average relative deviation = 4.5%

IIIT-Hyderabad

Circuit Elements	Previous Approach (seconds)	Proposed Approach (seconds)				
Inverter	483	7.2				
NAND	618	7.2				
NOR	620	7.8				
Full Adder	1080	8.1				

- This work proposed structural analysis of time domain noise for effective representation of noise for error-rate estimation.
- A quick method of characterizing probabilistic circuit elements is proposed utilizing structural analysis of noise and dynamic noise analysis of the three stage model of PCEs.

- Anshul Singh, Satyam Mandavilli, Vincent J. Mooney III and Keck-Voon Ling, "A novel and fast method for characterizing noise based PCMOS circuits," ASQED 2011, Kuala Lumpur, Malaysia.
- Anshul Singh, Arindam Basu, Keck-Voon Ling and Vincent J. Mooney III, "Modeling multi-output filtering effects in PCMOS," VLSI-DAT, April 25-27, Hsinchu, Taiwan, pp. 414-417, 2011.
- Arun Bhanu, Mark S. K. Lau, Keck-Voon Ling, Vincent J. Mooney III and Anshul Singh, "A more precise model of noise based PCMOS errors," Proceedings of DELTA, pp. 99-102, 2010.

Symposium 2011 Error-Rate Prediction: The Cascade Math Model

- Lau et al. have come up with a methodology to quickly predict the error-rates of cascade structure of blocks*.
- The methodology is based on
 - Knowing each block's output error-rate
 - Evaluation of mathematical equations that model the dynamics of error generation and propagation across the blocks.

*M. Lau, K. V. Ling, A. Bhanu, and V. J. Mooney III, "Error Rate Prediction for Probabilistic Circuits with More General Structures", The 16th Workshop on Synthesis And System Integration of Mixed Information technologies" (SASIMI2010), 18-19 October, 2010, Taipei, Taiwan, pp.220-225

Terminology	Symbols for the i th block	120.1	-1
Addend	$a_i = (a_{i,1}, a_{i,2}, \dots, a_{i,m_i})$	s_i	s_i
Carry-in	$c_i = (c_{i,1}, c_{i,2}, \dots, c_{i,q_i})$		
Carry-out	$c_{i+1} = (c_{i+1,1}, \dots, c_{i+1,q_{i+1}})$		Prob.
Probabilistic carry-in	$c'_i = (c'_{i,1}, c'_{i,2}, \dots, c'_{i,q_i})$		C' Block i C' 1
Probabilistic carry-out	$c'_{i+1} = (c'_{i+1,1}, \dots, c'_{i+1,q_{i+1}})$		
Carry-out bit-flip	$e_i^c = (e_{i,1}^c, e_{i,2}^c, \dots, e_{i,q_{i+1}}^c)$	10.00	
indicator		a_i	a_i
Sum	$s_i = (s_{i,1}, s_{i,2}, \dots, s_{i,n_i})$	(a)	(b)
Probabilistic sum	$s'_i = (s'_{i,1}, s'_{i,2}, \dots, s'_{i,n_i})$	i th Block in Vector No	tation
Sum bit-flip indicator	$e_i^s = (e_{i,1}^s, e_{i,2}^s, \dots, e_{i,n_i}^s)$		

Symposium 2011 The Cascade Math Model: Equations

$$\begin{split} & \sum_{\Omega}^{\Omega} P(e_i^c = \gamma^c \mid c_i = \delta, c_i' = \epsilon, a_i = \zeta) P(a_i = \zeta \mid c_i = \delta, c_i' = \epsilon) P(c_i = \delta, c_i' = \epsilon) \\ & = \sum_{\Omega} P(e_i^c = \gamma^c \mid c_i' = \epsilon, a_i = \zeta) P(a_i = \zeta) P(c_i = \delta, c_i' = \epsilon). \\ P(s_{ij}' \neq s_{ij}) = \sum_{\Omega} P(e_{ij}^s = \gamma^s, c_i = \delta, c_i' = \epsilon, a_i = \zeta) \\ & = \sum_{\Omega} P(e_{ij}^s = \gamma^s \mid c_i = \delta, c_i' = \epsilon, a_i = \zeta) P(a_i = \zeta \mid c_i = \delta, c_i' = \epsilon) P(c_i = \delta, c_i' = \epsilon) \\ & = \sum_{\Omega} P(e_{ij}^s = \gamma^s \mid c_i' = \epsilon, a_i = \zeta) P(a_i = \zeta) P(c_i = \delta, c_i' = \epsilon). \end{split}$$

47

Example - RCA

	c_{i+1}	c'_{i+1}	c_i	c'_i	a_i	b_i	e_i^c		⁸ i	s'_i	c_i	c'_i	a_i	b_i	e_i^s	_				
	Ó	Ó	0	0	0	0	0		0	0	0	0	0	0	0	-		s'.		
	0	0	0	0	0	1	0		0	0	0	0	1	1	0					
	0	0	0	0	1	0	0		0	0	0	1	0	0	1			T		
	0	0	0	1	0	0	0		0	0	0	1	1	1	1		es	_►∲		
	0	0	0	1	0	1	1		0	0	1	0	0	1	1			- ¥	¬eĭ	
	0	0	0	1	1	0	1		0	0	1	0	1	0	1			Drah	1 L	
	0	0	1	0	0	0	0		0	0	1	1	0	1	0	<u>C</u> 'i		Prob	LÆ.	C'i+1
	0	0	1	1	0	0	0		0	0	1	1	1	0	0			FA	P .	-
	0	1	0	0	0	0	1		0	1	0	0	0	0	1	-				
	0	1	0	0	0	1	1		0	1	0	0	1	1	1				_	
	0	1	0	0	1	0	1		0	1	0	1	0	0	0			ΤŤ		
	0	1	0	1	0	0	1		0	1	0	1	1	1	0					
	0	1	0	1	0	1	0		0	1	1	0	0	1	0			a b		
	0	1	0	1	1	0	0		0	1	1	0	1	0	0					
	0	1	1	0	0	0	1		0	1	1	1	0	1	1			0		
	0	1	1	1	0	0	1		0	1	1	1	1	0	1			Si		
	1	0	0	0	1	1	1		1	0	0	0	0	1	1	-		↑		
	1	0	0	1	1	1	1		1	0	0	0	1	0	1					
	1	0	1	0	0	1	0		1	0	0	1	0	1	0				-	
	1	0	1	0	1	0	0		1	0	0	1	1	0	0					
	1	0	1	0	1	1	1		1	0	1	0	0	0	0	Ci	-	FΔ.		Ci+1
	1	0	1	1	0	1	1		1	0	1	0	1	1	0		-			-
	1	0	1	1	1	0	1		1	0	1	1	0	0	1					
	1	0	1	1	1	1	1		1	0	1	1	1	1	1	_				
	1	1	0	0	1	1	0		1	1	0	0	0	1	0	-		TT		
	1	1	0	1	1	1	0		1	1	0	0	1	0	0					
	1	1	1	0	0	1	1		1	1	0	1	0	1	1			a b		
	1	1	1	0	1	0	1		1	1	0	1	1	0	1					
	1	1	1	0	1	1	0		1	1	1	0	0	0	1					
	1	1	1	1	0	1	0		1	1	1	0	1	1	1					
	1	1	1	1	1	0	0		1	1	1	1	0	0	0					
	1	1	1	1	1	1	0		1	1	1	1	1	1	0	_				
-								L .												

Full Adder

Transistor level diagram of FA

IIIT-Hyderabad