> lalnstinute
off Technoeleogy

A System-on-a-Chip L ock
Cache with Task Preemption
Support

By

Bilge S. Akqgul, Jaehwan L ee and
Vincent J. M ooney

Georgia Institute of Technology
School of Electrical and Computer Engineering

Outline

Introduction
Background

Lock Synchronization Problems

Our Methodology
Hardware and Software Designs

Experiments and Results
Conclusion

| ntroduction

M ulti-processor shared memory SoC
| ntertask/inter process synchronization
L ock synchronization over heads

= Lock delay, lock latency
= Memory bandwidth consumption

Aim:
= Reduce overheads
= Improve Real Time (RT) predictability

Background

Critical Section

= Code section where snhared data between multiple
execution unitsis accessed

s E.g.,, multiplereadersand multiple writers

= A lock is necessary to guar antee the consistency of
shar ed data (e.g., global variables)

L ock Delay
= Time between release and acquisition of a lock

L ock Latency
= Timetoacquirealock in the absence of contention

Problems

Ensuring mutual exclusiveness
Communication bandwidth consumption

Eliminate busy-wait problems

= Busy-wait: If lock Is busy, processors spin on
memory bus

Effective lock hand off necessary
m Fair
= Predictive

Previous Wor k

Spin-lock alter natives (Anderson ’90)
= Spin-on-read (spin on cache), delaysin spin-loops
Queue based software locks

= Array based queuing (Anderson ’90)
s MCSlocks (Méllor-Crummey, Scott ‘91)
= LH and M locks (L adin, Hager ston, M agnusson '94)

Queue based hardware locks
» QOLBY (Kagi’99) —makes use of collocation

Cache-based |ocks (Ramachandran’96)
= Memory consistency model
= New cache design, extra cache states for locks

M ethodology

Custom hardwar e unit: SoC L ock Cache
Utilize advantages of SoC Design

Short Critical Sectionscovered in DATE '01
Critical Sections may belong or short
Support preemption of tasks when necessary
Har dwar e interrupt trigger ed notification

_ock reguests handled on a processor -by-
Or ocessor basis

Separ ate the lock variables according to the
critical section lengths

SoC Lock Cache Hardware
M echanism

= s PN

ﬁ ﬁ SoC Lock Cache
¢ Address

1 1

SoC Arbitration
| ock I—OgiC
Cache

M ethodol ogy

Application Software
(Tasks)

Software

Hardware

MPC750 MPC750
SoC
L ock

o) Nkl

Multiple application tasks
Atalanta-RTOS

M ulti-processor set-up
with M PC750s

SoCL C provideslock
synchr onization among
Pr OCESsor s

Hardware Smulation Set-up

- Seamless CVE from
e N M entor Graphics
N 4 MPC750s

SoC Lock Cache
Unit (SoCL C)
Shared Memory
Interface L ogic

Arbiter
and
Memory
Controller

Softwar e

Task 1: CSaccess

|

Task 2: Try to access CS @Busy-Wait

i

Task 1:CS access
Interrupt

Task 2: Try toaccessCS
A
'

preempt

and
B s

Processor 1

In the case of long
Processor 2 Critical Sections,
non-preemptive
synchronization

causes

processor 1 INEfficient CPU
utilization among
tasks.

Pr ocessor 2

Tasks Execution
pntext Sw I | Time I mprovement

Softwar e

L ock-wait table 1
4 3 2 1 0
Lock 1 12 | 12 | 10 | 9 8

20 19 18 17 16
Lock 2

28 | 27 | 26 | 25 | 24
LOEKE 36 | 35 | 34 | 33 | 32

Lock 4 a4 | 43 | 42 | 41 | 40
52 | 51 | 50 | 49 | 48
60 | 59 | 58 | 57

Lock n

4 3 2 1

Assume 64 tasks 2 |1 |0 o

20 19 18 17

Each lock keeps a lock- s |2 | | 5

36 85 34 33

wait table of 64-bit entries AR
Expandableto > 64 s2 | s | s0 | a0

60 59 58 57

Tables accessed by | SR L ock-wait table 2

Softwar e

Lock_longCS
v
Read |ock

return from Remove task
Lock longCS from refdy tablg

v Context Execulti
ecution
Execute S/vltch without holding lock

long CS
3 New task —— Holding lock

UnL ock i< [l ® Fail to acquire lock

Execute | SR,

Interrupt o Release lock
Handler

Client address
space

client
local
memory

Experiments

Database Application
(database object flow)

Server address
Space

With Atalanta
RTOS

With 4 MPC750s

Database Example
application (run
with 40 tasks)

Experiments

Example Database Application
Transactions

long Reql

transactionl

-

Access of
Object O,

. \ o
i __ ” . |
transactiond

transaction3

Object Oy
by transaction3

Observed
Per for mance
mprovement with

_ock Cache Unit
«100% speedup in lock
delay

«32% speedup in lock
latency

«27% speedup In total
execution time

Experiments

Long CS lock results

Without | With
SoCLC | SoCLC

Lock e Atalanta RTOS
Latency 1200 908 1.32X | ¢ 40 tasks

(clk cycles) e 4 PEs
Lock Delay

(clk cycles)

Speedup

47,264 | 23,590

Exe. Time
(clk cycles)

36.9M 29M

Experiments

Small CS lock results

Without | With
SoCLC | SoCLC

Lock cAtalanta RTOS
Latency 884 32 21X e 40 tasks

(clk cycles) e 4 PEs
Lock Delay

(clk cycles)

Speedup

short
CS
locks

long
CS
locks

L=16
L=32
L=64
L=128
L=16
L=32
L=64
L=128

total #
of
locks

T=32
T=48
T=80
T=144
T=48
T=64
T=96
T=160

Total
Area
(gates)

2,734
3,586
5,288
9,027
3,454
4,306
6,008
9,747

short
CS
locks

S=128

Synthesis of SoCLC

e TSMC 0.25 micron technology (Synopsys Behavioral Compiler)

long
CS
locks

L=16
=32
L=64
L=128
L=16
=32
L=64
L=128

total #
of
locks

T=80

T=96
T=128
T=192
T=144
T=160
T=192
T=256

Total
Area
((CEL=H))

4,881
5,733
7,435
11,174
8,163
9,015
10,717
14,456

Conclusion

A hardwar e mechanism for multi-processor SoC
L ock Synchronization: SoC L ock Cache

Reduction in lock latency, lock delay

27% overall speedup in an example database
application

Support both long Critical Sections and short
Critical Sections

Allow context-switching of tasks instead of busy-
waiting

