

A System-on-a-Chip Lock Cache with Task Preemption Support

Bilge S. Akgul, Jaehwan Lee and Vincent J. Mooney

Georgia Institute of Technology School of Electrical and Computer Engineering

Outline

Introduction Background Lock Synchronization Problems Our Methodology Hardware and Software Designs Experiments and Results Conclusion

Introduction

Multi-processor shared memory SoC Intertask/interprocess synchronization Lock synchronization overheads Lock delay, lock latency Memory bandwidth consumption Aim: Reduce overheads Improve Real Time (RT) predictability

Background

Critical Section

- Code section where shared data between multiple execution units is accessed
- E.g., multiple readers and multiple writers
- A lock is necessary to guarantee the consistency of shared data (e.g., global variables)

Lock Delay

- Time between release and acquisition of a lock
- Lock Latency

Time to acquire a lock in the absence of contention

Problems

Ensuring mutual exclusiveness
Communication bandwidth consumption
Eliminate busy-wait problems

Busy-wait: If lock is busy, processors spin on memory bus

Effective lock hand off necessary

Fair
Predictive

Previous Work

Spin-lock alternatives (Anderson '90) Spin-on-read (spin on cache), delays in spin-loops Queue based software locks Array based queuing (Anderson '90) MCS locks (Mellor-Crummey, Scott '91) LH and M locks (Ladin, Hagerston, Magnusson '94) Queue based hardware locks QOLBY (Kagi '99) – makes use of collocation Cache-based locks (Ramachandran'96) Memory consistency model New cache design, extra cache states for locks

Methodology

Custom hardware unit: SoC Lock Cache Utilize advantages of SoC Design Short Critical Sections covered in DATE '01 Critical Sections may be long or short Support preemption of tasks when necessary Hardware-interrupt triggered notification Lock requests handled on a processor-byprocessor basis Separate the lock variables according to the critical section lengths

SoC Lock Cache Hardware Mechanism

Methodology

Multiple application tasks
Atalanta-RTOS
Multi-processor set-up with MPC750s
SoCLC provides lock synchronization among processors

Hardware Simulation Set-up

Seamless CVE from Mentor Graphics
4 MPC750s
SoC Lock Cache Unit (SoCLC)
Shared Memory
Interface Logic

Software

Software

Lock-wait table 1

26

32

49

57

Assume 64 tasks

Each lock keeps a lock-wait table of 64-bit entries
Expandable to > 64
Tables accessed by ISR

Lock 1

Lock 2

Lock 3

Lock 4

...

Lock n

7	6	5	4	3	2	1	0
15	14	13	12	11	10	9	8
23	22	21	20	19	18	17	16
31	30	29	28	27	26	25	24
39	38	37	36	35	34	33	32
47	46	45	44	43	42	41	40
55	54	53	52	51	50	49	48
63	62	61	60	59	58	57	56

59

4

20

28

44

60

Lock-wait table 2

Software

Database Application (database object flow)

With Atalanta RTOS
With 4 MPC750s
Database Example application (run with 40 tasks)

Example Database Application Transactions

Observed Performance Improvement with Lock Cache Unit •100% speedup in lock delay •32% speedup in lock latency •27% speedup in total execution time

Long CS lock results

	Without SoCLC	With SoCLC	Speedup
Lock Latency (clk cycles)	1200	908	1.32x
Lock Delay (clk cycles)	47,264	23,590	2.00x
Exe. Time (clk cycles)	36.9M	29M	1.27x

Atalanta RTOS
40 tasks
4 PEs

Small CS lock results

	Without SoCLC	With SoCLC	Speedup
Lock Latency (clk cycles)	884	32	27x
Lock Delay (clk cycles)	8936	102	87.6x

Atalanta RTOS 40 tasks 4 PEs

Synthesis of SoCLC

• TSMC 0.25 micron technology (Synopsys Behavioral Compiler)

short CS locks	long CS locks	total # of locks	Total Area (gates)	short CS locks	long CS locks	total # of locks	Total Area (gates)
	L=16	T=32	2,734	S=64	L=16	T=80	4,881
S-14	L=32	T=48	3,586		L=32	T=96	5,733
3=10	L=64	T=80	5,288		L=64	T=128	7,435
	L=128	T=144	9,027		L=128	T=192	11,174
No. C.	L=16	T=48	3,454	S=128	L=16	T=144	8,163
C 22	L=32	T=64	4,306		L=32	T=160	9,015
5=32	L=64	T=96	6,008		L=64	T=192	10,717
	L=128	T=160	9,747		L=128	T=256	14,456

Conclusion

- A hardware mechanism for multi-processor SoC Lock Synchronization: SoC Lock Cache
- Reduction in lock latency, lock delay
- 27% overall speedup in an example database application
- Support both long Critical Sections and short Critical Sections
- Allow context-switching of tasks instead of busywaiting