
Hardware Support for
Priority Inheritance

Bilge E. S. Akgul+, Vincent J. Mooney+,
Henrik Thane* and Pramote Kuacharoen+

+Center for Research on Embedded Systems and Technology (CREST)
+School of Electrical and Computer Engineering
+Georgia Institute of Technology, USA

*Malardalen Real-Time Research Center (MRTC)
*Malardalen University, Sweden

2

Outline
� Introduction

– SoCLC
�Background & Motivation

– Priority Inheritance
�Related work
�SoCLC with IPCP
�Experiment & Results
�Conclusion

3

�A system-on-a-chip
(SoC) may include
–Multiprocessors, on-

chip shared memory,
peripherals and other
hardware components

–Multi-tasking application
with a real-time
operating system
(RTOS)

�Many shared-data
structures cause
contention

PE: processing element

Memory

critical
section

PE PE PE1 2 …… N

L1 L1L1

ta
sk

1
ta

sk
2

ta
sk

3

ta
sk

4
ta

sk
5

ta
sk

6

SoCLC

Introduction

4

Introduction

� Solution: move
lock variables
to a specialized
hardware logic

� SoC Lock
Cache (SoCLC)

PE: processing element

Memory

critical
section

PE PE PE1 2 …… N

L1 L1L1

ta
sk

1
ta

sk
2

ta
sk

3

ta
sk

4
ta

sk
5

SoCLC

ta
sk

6

5

SoCLC
0xF000

Pr1 Pr2 … PrN Lv1

Pr1 Pr2 … PrN Lv2

Pr1 Pr2 … PrN LvK

…

…

DecoderDecoder

Control
Logic

Control
Logic …

…

Address

p1
p2

pN

Lock Unit

Interrupts to PEs

0 0 … 0 0

0 0 … 0 0

0 0 … 0 0

0 0 … 0 1

0 0 … 0 0

0 0 … 0 0

0xF000

1 0 … 0 1

0 0 … 0 0

0 0 … 0 0

0xF000

1 0 … 0 0

0 0 … 0 0

0 0 … 0 0

�27% to 55% speedups
– DATE’01, CASES’01, DAES’02

we
re

Pr1 Pr2 … PrN
Lv1

Lv2

Lvk

P2: lw R3, (0xF000)P1: lw R3, (0xF000)P2: sw 0, (0xF000)

6

Motivation
�Real-time operating system (RTOS)

with a priority-based scheduler
– Assign a higher priority to a time-

critical task with hard real-time
requirement

�Problem: If tasks with different
priorities share resources ����
priority inversion may occur
– May miss real-time deadlines

7

Motivation
�Priority inheritance in RTOS

– May affect real-time performance of
application tasks

�Objective: To implement hardware
support for priority inheritance (via
SoCLC) to help RTOS be more
predictive and efficient

8

Priority Inheritance Protocols
� Sha, Rajkumar and Lehoczky (`88)
� Prevents unbounded blocking

– Running task inherits the highest dynamic
priority of all the tasks it blocks

� List of blocked tasks must be saved in a
priority queue for each CS

� Maximum blocking time (due to a lower
priority task):
– On each lock, at most once
– Length of one CS (executed in a lower

priority task)
� Still problem: deadlock, chained

blockings

9

Priority Ceiling Protocols
� Sha, Rajkumar and Lehoczky (`90)
� Baker (`91)
� Klein and Ralya (`90)
� Prevent deadlocks and chained

blockings
– Implies that once a process locks its first CS,

it can never be blocked by lower priority
tasks

� Original priority ceiling protocol (OPCP)
� Immediate priority ceiling protocol

(IPCP)
� Each task has a static (default) priority

10

IPCP vs. OPCP

highest priority of
any task using CS

highest priority of
any task using CSCeiling priority

moreless# context
switches

one CS durationone CS durationMax blocking
duration

when higher priority
task blockedwhen CS accessedDynamic priority

more complexsimplerAlgorithm

OPCPIPCP

IPCP is currently used in POSIX, RT Java, Ada

11

Related Work
�Operating system coprocessors
� Implement various real-time

functions in hardware
– Real Time Unit (RTU), `96

• Many RTOS functions in hardware
– Ada TAsking Coprocessor (ATAC), `95

• It has its own instruction set
• Implements real-time part of Ada (also

Ada rendezvous with basic priority
inheritance) in hardware

12

Our New Approach:
SoCLC Priority Inheritance

PE: processing element

Memory

critical
section

PE PE PE1 2 …… N

L1 L1L1
ta

sk
1

ta
sk

2
ta

sk
3

ta
sk

4
ta

sk
5

SoCLC

ta
sk

6

IPCP

13

Our New Approach:
SoCLC Priority Inheritance

Priority Inheritance Hardware
Architecture for a 64-task RTOS

� SoCLC with IPCP
� Ceiling values for

every CS used in
each task is
specified
– SoCLC needs the

ceiling values of
locks

� Task priorities are
updated by SoCLC
in hardware

� Blocked tasks are
monitored by SoCLC

IPCP

14

Example

States of
blocked tasks

Priority
Encoder

Highest
priority

task

0
1

Dynamic priority
of tasks

register

P
E

 ta
sk

s
Interrupt

Generator Logic

pr
io

rit
y

Ceiling

Priority
of lock
owner

0
0

Lock

variables

2
3

task1
task2
task3 E CS1

E

1
0

1
1

3
1

1
2
3

1
2 0

0
…
…

0
0

0
0

0
0

E

15

Example

States of
blocked tasks

Priority
Encoder

Highest
priority

task

0
1

Dynamic priority
of tasks

register

P
E

 ta
sk

s
Interrupt

Generator Logic

pr
io

rit
y

Ceiling

Priority
of lock
owner

0
0

Lock

variables

2
3

task1
task2
task3 E CS1

E

1
0

1
1

1 1
2
3

1
2 0

0
…
…

0
0

0
0

0
0

E

E

CS1

16

Example

States of
blocked tasks

Priority
Encoder

Highest
priority

task

0
1

Dynamic priority
of tasks

register

P
E

 ta
sk

s
Interrupt

Generator Logic

pr
io

rit
y

Ceiling

Priority
of lock
owner

0
0

Lock

variables

2
3

task1
task2
task3 E CS1

E

1 0
1
11

1
2
3

1
2 0

0
…
…

0
0

0
0

0
0

E

E

ECS1 CS2

17

Example

States of
blocked tasks

Priority
Encoder

Highest
priority

task

0
1

Dynamic priority
of tasks

register

P
E

 ta
sk

s
Interrupt

Generator Logic

pr
io

rit
y

Ceiling

Priority
of lock
owner

0
0

Lock

variables

2
3

task1
task2
task3 E CS1

E

1 0
1
12

1
2
3

1
2 0

0
…
…

0
0

0
0

0
0

E

E

ECS1 CS2

1

CS2 E

18

With SoCLC

Without SoCLC

Experimental HW/SW Architecture (1)

� Multiple application
tasks and Atalanta-
RTOS

� Multiprocessor setup
with MPC750s on
Seamless CVE (from
Mentor Graphics)

� Atalanta-RTOS
� SoCLC provides lock

synchronization
among processing
elements

19

Experimental HW/SW Architecture (2)

�MPC750 processors
– 32 kB data cache
– 32 kB instruction cache
– 300 MHz internal clock speed
– 100 MHz global bus system clock

speed
�Shared memory size: 16 MB

20

Simulation Scenario:
a robot application

21

Task Priorities
� Task1 ���� highest priority task with

critical hard real-time requirement
(response time: 250 us)

� Task2 ���� second highest priority task
(response time: 300 us)

� Task3 ���� third highest priority task
(response time: 300 us)

� Task4 ���� lowest priority task
(response time: 600 us)

22

Execution Trace

With
Software IP

With
SoCLC+IPCP

task1

task2
task3

CS1

CS1
CS1

task4 CS1

CPU2

CPU1

CPU3

CS1

task1

task2
task3

CS1

task4

CPU2

CPU1

CPU3 CS1

CS1 CS1

CS1

23

Experimental Results

337 us77 us247 us93 usCompletion time
for LCPI

517 us80 us556 us283 us
Completion time
for Software PI

Protocol

600 us300 us300 us250 usWCRT

Task 4Task 3Task 2Task 1

1.43 X78226112170
Overall Execution

(clk cycles)

1.75 X38346701
Lock Delay
(clk cycles)

1.79 X318570
Lock Latency
(clk cycles)

Speedup
With

SoCLC
Without
SoCLC

24

Synthesis Results

•Area in NAND gate equivalents in .25TSMC

•Can easily fit into on-chip eFPGA

SoCLC

IPCP
3740 NAND gate equiv.

12045 NAND gate equiv.

25

�SoCLC: Custom hardware logic that
improves lock-based
synchronization performance in a
multiprocessor SoC

�Priority inheritance support with
SoCLC hardware

� Improves real-time predictability of
the system and helps the
application deadlines to be met

Conclusion

