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�A system-on-a-chip 
(SoC) may include
–Multiprocessors, on-

chip shared memory, 
peripherals and other 
hardware components

–Multi-tasking application 
with a real-time 
operating system 
(RTOS)

�Many shared-data 
structures cause 
contention
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Introduction

� Solution: move 
lock variables 
to a specialized 
hardware logic

� SoC Lock 
Cache (SoCLC)
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Motivation
�Real-time operating system (RTOS) 

with a priority-based scheduler
– Assign a higher priority to a time-

critical task with hard real-time 
requirement

�Problem: If tasks with different 
priorities share resources ����
priority inversion may occur
– May miss real-time deadlines
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Motivation
�Priority inheritance in RTOS

– May affect real-time performance of 
application tasks 

�Objective: To implement hardware 
support for priority inheritance (via 
SoCLC) to help RTOS be more 
predictive and efficient
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Priority Inheritance Protocols
� Sha, Rajkumar and Lehoczky (`88)
� Prevents unbounded blocking

– Running task inherits the highest dynamic 
priority of all the tasks it blocks

� List of blocked tasks must be saved in a 
priority queue for each CS

� Maximum blocking time (due to a lower 
priority task):
– On each lock, at most once
– Length of one CS (executed in a lower 

priority task)
� Still problem: deadlock, chained 

blockings
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Priority Ceiling Protocols
� Sha, Rajkumar and Lehoczky (`90)
� Baker (`91)
� Klein and Ralya (`90)
� Prevent deadlocks and chained 

blockings
– Implies that once a process locks its first CS, 

it can never be blocked by lower priority 
tasks

� Original priority ceiling protocol (OPCP)
� Immediate priority ceiling protocol 

(IPCP)
� Each task has a static (default) priority
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IPCP vs. OPCP
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IPCP is currently used in POSIX, RT Java, Ada
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Related Work
�Operating system coprocessors
� Implement various real-time 

functions in hardware 
– Real Time Unit (RTU), `96

• Many RTOS functions in hardware
– Ada TAsking Coprocessor (ATAC), `95

• It has its own instruction set
• Implements real-time part of Ada (also 

Ada rendezvous with basic priority 
inheritance) in hardware
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Our New Approach:
SoCLC Priority Inheritance
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Our New Approach:
SoCLC Priority Inheritance

Priority Inheritance Hardware 
Architecture for a 64-task RTOS

� SoCLC with IPCP
� Ceiling values for 

every CS used in 
each task is 
specified
– SoCLC needs the 

ceiling values of 
locks

� Task priorities are 
updated by SoCLC 
in hardware

� Blocked tasks are 
monitored by SoCLC

IPCP
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Example
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Example
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With SoCLC

Without SoCLC

Experimental HW/SW Architecture (1)

� Multiple application 
tasks and Atalanta-
RTOS

� Multiprocessor setup 
with MPC750s on 
Seamless CVE (from 
Mentor Graphics)

� Atalanta-RTOS
� SoCLC provides lock 

synchronization 
among processing 
elements
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Experimental HW/SW Architecture (2)

�MPC750 processors
– 32 kB data cache
– 32 kB instruction cache
– 300 MHz internal clock speed
– 100 MHz global bus system clock 

speed
�Shared memory size: 16 MB
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Simulation Scenario:
a robot application
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Task Priorities
� Task1 ���� highest priority task with 

critical hard real-time requirement 
(response time: 250 us)

� Task2 ���� second highest priority task 
(response time: 300 us)

� Task3 ���� third highest priority task 
(response time: 300 us)

� Task4 ���� lowest priority task     
(response time: 600 us)
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Execution Trace
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Experimental Results
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Synthesis Results

•Area in NAND gate equivalents in .25TSMC   

•Can easily fit into on-chip eFPGA

SoCLC

IPCP
3740 NAND gate equiv.

12045 NAND gate equiv.
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�SoCLC: Custom hardware logic that 
improves lock-based 
synchronization performance in a 
multiprocessor SoC

�Priority inheritance support with 
SoCLC hardware

� Improves real-time predictability of 
the system and helps the 
application deadlines to be met

Conclusion


