Energy Estimation of Peripheral Devices in Embedded Systems

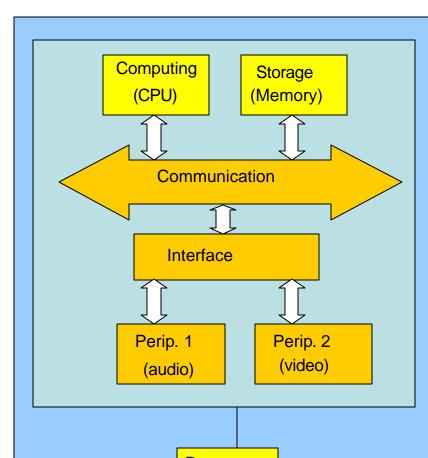
Ozgur Celebican

Center for Research on Embedded Systems and Technology Georgia Institute of Technology, Atlanta, GA

Tajana Simunic Rosing Hewlett-Packard Labs, Palo Alto, CA

Vincent J. Mooney III

Center for Research on Embedded Systems and Technology Georgia Institute of Technology, Atlanta, GA

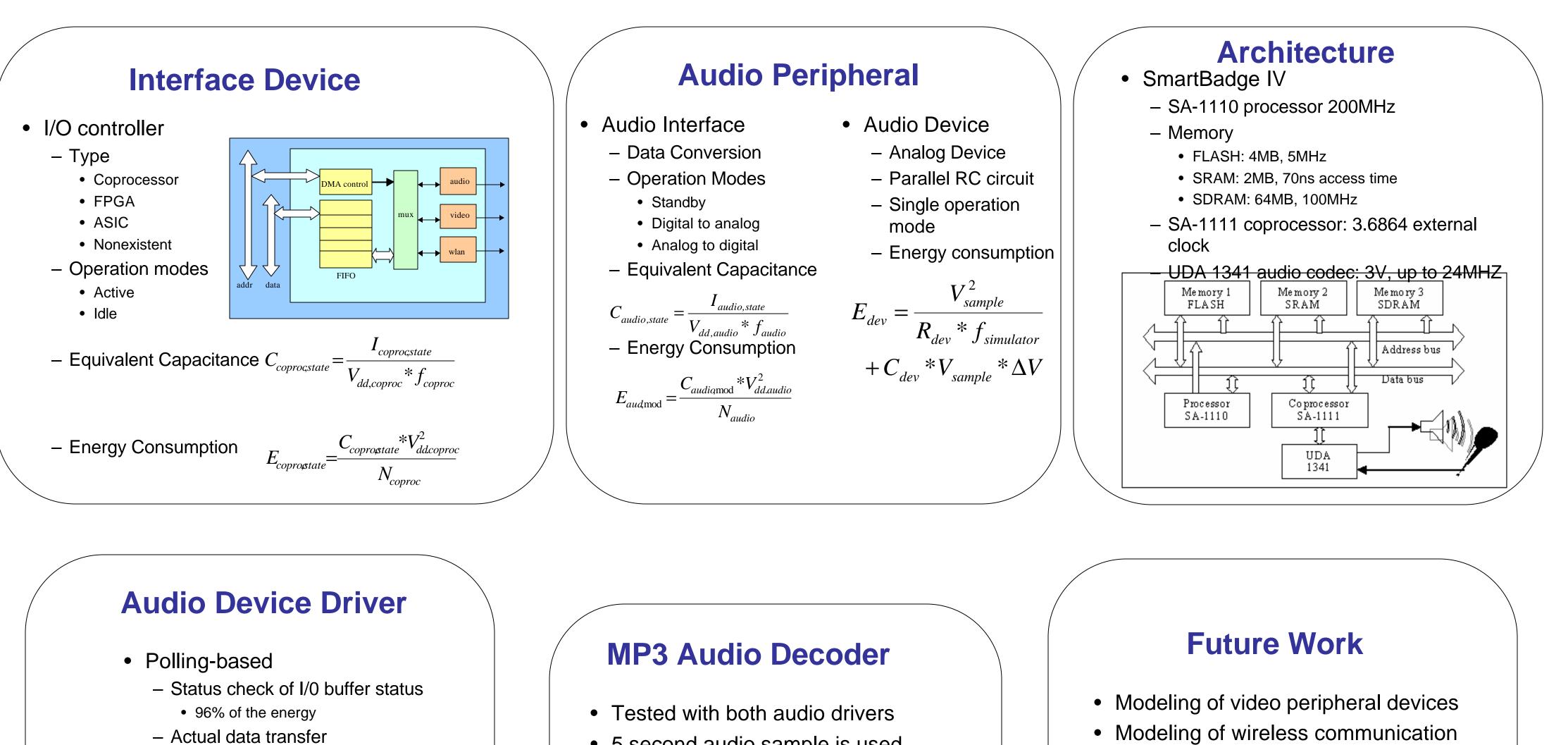

Motivation

- Embedded Systems
 - –Faster
 - –Powerful
 - -Longer
- Increase in energy consumption
- Peripheral Devices
 - –Audio, video, wireless links ...
 - -60 % of system energy consumption
- Energy Optimization
 - -Datasheet values
 - -Prototype
 - -Simulator
- Proposal: An cycle-accurate energy

• Devices

- -Computing
- -Storage
- -Interface
- -Peripheral
- –Power supply
- Communication
 - -Address bus
 - –Data bus
- Each Device
 - Energy model per operation mode
- Total energy consumption

Cycle-Accurate Energy Simulator



- ARMulator v1.1
 - Performance simulator
 - ARM processors
 - Modular simulator
- Previous Work
 - Computing
 - Storage
 - Power supply
- Communication Protocols
 - Polling-based

simulator including peripheral devices

$E_{Cycle} = E_{Computing} + E_{Storage} + E_{Power} + E_{Interface} + E_{Peripher}$

Power Supply

• 3% of the energy

Routine	Energy %		
check_fifo	96.29		
to_fifo	1.30		
from_fifo	1.29		
main	0.29		
flsbuf	0.02		

- Interrupt-based
 - DMA-supported
 - Direct transfer between memory and the device
 - CPU in sleep mode
 - Actual data transfer
 - 99% of the energy

Routine	Energy %	
dma_transfer	98.78	
flsbuf	0.49	
fprintf	0.11	
freopen	0.06	
fputc	0.04	

- 5 second audio sample is used
- Sample is decoded and played
- 44% total system energy consumption reduction with interrupt-based device driver

Audio driver	Polling-based		DMA-based		
	Energy (J)	%	Energy (J)	%	% diff.
Proc.	2.59	18.43	0.86	10.95	66.74
Mem.	3.30	23.47	1.27	16.15	61.49
SA1111	1.06	7.55	0.93	11.81	12.44
Sys. Bus	0.02	0.16	0.01	0.19	36.18
Audio D.	3.25	23.09	3.25	41.33	-0.20
DC_DC	0.76	5.42	0.54	6.84	29.26
Battery loss	3.08	21.89	1.00	12.73	67.45
System	14.06		7.87		44.03

- peripheral devices
- Modeling of sensor peripheral devices
- Integrating multiple models in one framework

Conclusion

- Importance of Energy Optimization
- Effects of peripheral devices on energy optimization
- Cycle-accurate energy simulation
- Audio Driver Optimization
 - 44 % energy reduction