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Continuing Emergence of Embedded Systems

• Favorable technology trends
– From hundreds of millions to billions of transistors

• Projected by market research firms to be a $50 
billion space over the next five years

• Stringent constraints
– Performance
– Power as “a first class citizen”
– Size and cost
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Importance of A Supporting Memory Subsystem

• Disparity between processor speeds and memory 
access times is increasing
– Custom embedded processors afford massive instruction 

level parallelism
– A cache miss at any level of the memory hierarchy incurs 

substantial losses in processing throughput

• Deep cache hierarchies help bridge the speed gap, 
but at a cost
– Trade-off capacity for access latency
– Significant microarchitecture investment

– Power requirements, size and cost
– Caches are vulnerable to irregular access patterns
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Shortcomings of A Memory Hierarchy 

• Bandwidth from memory to cache is also limited
– When data is fetched but not used, bandwidth is wasted

• Important to maximize resource utilization

• Caches Are Not Well Utilized



5

CREST LCTES/SCOPES 16 July 2002
Georgia Institute of Technology http://www.crest.gatech.edu 

Impact of Spatial Locality on System Design

• When the application has low spatial locality, then the usable 
cache size is less than its actual capacity
– If ¼ of the fetched data is used then most of the cache resource

is used to store unnecessary data
– For a 512 Kb cache, only 128 Kb are effectively used

– To compensate for wasted storage, a larger cache is necessary
– Unfortunately, cost and logic complexity are proportional to size

– This is particularly undesirable in embedded systems where profit 
margins and system area are low

– In addition, larger circuits are undesirable from an energy perspective

• Similarly, when the application has low spatial locality, the 
system bandwidth is not used effectively
– Bandwidth is wasted
– Longer memory access times

24.001024 KbToshiba TC55W800FT-55
Toshiba TC55V400AFT7
Cypress CY62128VL-70SC

Brand

9.19512 Kb
4.43128 Kb

$ CostCache Size
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Enhancing Spatial Locality

• Compiler optimizations can alleviate the amount of 
investment in caches

Control Optimizations

• Change program to 
maximize usage of 
fetched data

• Loop transformation 
such as blocking and 
tiling

• Benefit from larger 
caches

Data Reorganization

• Change data layout so 
that a fetched block is 
more likely to contain 
data that will be used

• Data Remapping
• Direct impact on cache 

size

Locality Enhancement

lower “cache 
complexity”
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Scope of Control and Data Optimizations

• Control optimizations work well for numerical 
computations that stream data
– Applications such as FFT, DCT, Matrix Multiplication, etc.
– Data stored in arrays
– Programs are optimized to use current data set as much 

as possible
– Ding and Kennedy in PLDI 1999
– Mellor-Crummey, Whalley and Kennedy in IJPP 2000
– Panda et al. in ACM Transactions on Design Automation of 

Electronic Systems 2001

• However, a large class of important real world 
applications extend beyond number crunching
– Complex data structures or records

– Sets of variables grouped under unique type declarations
– Difficult to modify program to maximize fetched data usage
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Advantage of Data Optimizations

• Control optimizations break down in the presence of 
complex data structures
Example
– Linked list of records, each record has three fields

– Key, Datum and Next (a pointer to the next record in the list)
– Search for a record with special Key and replace Datum

– The search will need the Key and Next fields of many records
– By contrast, only one Datum field is necessary

• Not clear how to modify a program to maximize use 
of fetched Datum field
– Many similar examples in real world applications

• Best to reorganize the data so that each block 
contains more items that will be used together
– Chilimbi and Larus in PLDI 1999
– Kistler and Franz in PLS 2000
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Realizing Systems With Simpler (Smaller) 
Caches via Data Remapping

• Data remapping is a novel data reorganization 
algorithm 
– Fully automated whereas previous work requires manual 

retooling of applications
– Linear time complexity
– Pointer-friendly, a show stopper for related work
– Uses standard allocation strategies 

– Previous work uses complex heap allocation strategies
– Compiler directed, does not perform any dynamic data 

relocation
– Previous work incurs dynamic overheads because they move 

data around (not desirable from a power/energy perspective)

• Reduce the “workingset” and enhance resource 
utilization
– Influence cache size and bandwidth configurations during 

system design for a fixed performance goal
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Novel Use of A Compiler
A Focus On Embedded System Design

• Fix program
• User specifies 

design constraints
• Optimizations and 

exploration tools 
search design space

• Best design is 
chosen

Input
Data

Fixed
Program Compiler Optimizations

User Specified
Design Constraints
• Power
• Performance
• Timing

Exploration
Tool

select design 
with lowest 

cost
Range of Customized
Micro-Architectures

For a desired 
performance goal, can a 
system be designed
with a smaller cache 
and hence lower cost?
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Traditional Role of a Compiler

• Compiler optimizations such as locality enhancing 
techniques are well-known in traditional compiler 
optimizations 
– Fixed target processor
– Optimize program for performance

Input
Data

Program 1

Program 2

Program k

...

Locality Enhancing Algorithms
• Loop transformations
• Data reorganization

Software Pipelining 
and Scheduling

Register 
Allocation

Compiler Optimizations

code 
generated 

for fixed 
target 

processor
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Presentation Outline

• Introduction

• Data Remapping Algorithm
– Overview
– Remapping of Global Data Objects
– Remapping of Heap Data Objects
– Analysis for Identifying Candidates for Remapping

• Evaluation Framework and Results
– Design Space Exploration via Data Remapping

• Concluding Remarks
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Data Remapping Overview

• Focus of data reorganization is on data records 
where the program reference pattern does not 
match the data layout in memory
– Data is fetched in blocks 
– If the fields of a record are located in the same block but 

they are not all used at the “same” time, then some fields 
were unnecessarily fetched

– Need to filter out such record types for remapping

• When we have identified records how do we 
remap?
– Runtime data movement is expensive
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struct Node {
int A;
int B;
int C;

};

Node List [N];

Example C-style code. Node 
is a record with three fields. 
List is array of Nodes.

A B C A B C A B C A B C
. . .

A A A A B B
. . .

C C CB B

Contiguous memory segment reserved for variable List

Traditional List layoutthe fields of Node 
are adjacent

Remapped List layout

the fields of List[k] 
to List[k+N] Nodes 
are co-located

the fields of Node are 
staggered by Rank(List) or N

Remapping Arrays Via Offset Computation

=

=

remap data fields for collocation

apply traditional data layout

. . .
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Algorithm for Remapping Global Data Objects

• The algorithm for remapping global data structures selectively 
attributes global data objects with the remap offset 
computation function

• The offset function is evaluated during code generation to 
locate a target field

• The traditional function is associated with all other global and 
stack-allocated structures
– Stack objects are often small and exhibit good temporal locality

for each global variable V in program P do
if V is of type array of record R then

if R was marked for remapping then
associate the remap offset computation function with V

else
associate the traditional offset computation function with V

end if
end if

end for

Only arrays of records 
are selected for 
remapping

If layout of R does 
not match program 

access patterns
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Data Remapping Overhead

• The remapping of global data objects does not  
contribute run-time overhead

– Both functions require the same computation overhead for 
the first term

– K may or may not be available to the compiler
– The second term does not incur any run-time cost

– The value of N is available to the compiler

=

=
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Remapping Technique for Heap Objects

• What if we have dynamically allocated records, is it still 
possible to remap using offset expressions?
– Yes, first we introduce a wrapper around standard allocation    

tools in the language
– Wrapper is very simple, it allocates a memory pool to hold a few records

– Code generator handles offset computation

• By contrast, traditional allocation tools are oblivious to the 
memory hierarchy
– The resulting layout may interact poorly with the memory access 

pattern
– To resolve the poor layout to access interaction, the objects can 

be reorganized at specific intervals during execution
– After a large tree is built, the nodes can be reordered
– Reorganization of objects during execution is limited
– High cost and unsafe in the context of pointer-centric languages
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A B C

struct Node {
int A;
int B;
int C;

};

…
Node* P;

while (condition) {
P = Allocate (Node);

}
Example C-style code. Node 
is a record with three fields. 
P is a pointer to a Node.

A B C

A B C A B C

A B C A B C A B C

Object layout in Cluster after one, two and three traditional allocations of Node

A

A

B

B

C

A A A B B B C C C

C

Object layout in Cluster after one, two and three remapped allocations of Node

Locality Enhancing Placement

Placement is controlled by an automatically generated light-weight Wrapper

StaggerDistance is the number
of fields to be co-located
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Remapping Heap Objects Via Offset Computation

• Dynamically allocated objects are accessed through pointer variables
– A pointer variable P is a variable whose value is a memory location 
– P→x refers to the xth field of some record instance

• The code generator must determine which record layout is aliased by a 
pointer variable

– If a pointer aliases a dynamically allocated record then the remap offset computation 
function must be used

– If a pointer aliases a static or global record then the traditional function must be used
– In cases where static disambiguation is not possible, a run-time check is necessary

Σ
i  = 1

f - 1

FieldSize(*P.i)DDNomap(P→f ) = 

Σ
i  = 1

f - 1

StaggerDistance ∗ MaxFieldSize(*P)DDRemap(P→f ) = 

*P = Record type
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Resolving the Alias Issue

R1 = [P] + Traditional (P→B);
R2 = [P] + Remap (P→B);
P0 = [P] > Stack Pointer Register
R1 = R2 if P0 

R3 = Load R1

struct Node {
int A;
int B;
int C;

};
Node List[100];
Node* P;

if  ( select )  P = allocate(Node);
else P = &List[k];
Print (P→B);

Not Remapped
Remapped

Computation of the proper offset to access element 
B of Node can not be determined at compile time

• Since dynamic data reorganization does not affect global objects, a 
run-time check is used to determine which offset computation 
function to use

– The compiler evaluates the remap and traditional expressions
– The results of both computations are inserted in the instruction stream
– A run-time comparison of the pointer value to the stack register pointer 

selects the correct offset

• The reorganization algorithm reorders the fields of a record such that 
access to the most frequently used field does not require a run-time 
disambiguation

– Both offset expressions evaluate to 0 for the first field of a record
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Remapping Heap Objects Via Offset Computation

• Dynamically allocated objects are accessed through pointer variables

• The code generator must determine which offset expression to use since 
different record layouts require different expressions

– If a pointer aliases a dynamically allocated record then the remap offset computation 
function must be used

– If a pointer aliases a static or global record then the traditional function must be used
– In cases where static disambiguation is not possible, a run-time check is necessary

– The compiler evaluates the remap and traditional expressions
– The results of both computations are inserted in the instruction stream
– A run-time comparison of the pointer value to the stack register pointer selects the 

correct offset

R1 = [P] + Traditional (P→B);
R2 = [P] + Remap (P→B);
P0 = [P] > Stack Pointer Register
R1 = R2 if P0 

R3 = Load R1

struct Node {
int A;
int B;
int C;

};
Node List[100];
Node* P;

if  ( select )  P = allocate(Node);
else P = &List[k];
Print (P→B);

Not Remapped
Remapped

Computation of the proper offset to access element 
B of Node can not be determined at compile time
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Comment About Alias Disambiguation

• Clearly dynamic disambiguation of all pointer 
accesses is not efficient

• Steensgaard points-to analysis is used to resolve as 
many pointer aliases at compile time
– Analysis does not discriminate between aliases of a 

pointer and fields of a record
– Pointer to any field of a record is classified as an alias of the 

entire record
– By contrast to Andersen point-to analysis

– Linear time algorithm

• Combination of compile time and dynamic 
disambiguation empirically observed to be effective
– On average, 3-5% increase in dynamic instruction count
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Algorithm for Remapping Dynamic Data Objects

• The algorithm for dynamic data reorganization focuses on repeated 
single object allocations

– The algorithm for global data reorganization can be extended for dynamic 
array-of-record

• Methodology is to automatically generate a light-weight wrapper 
around traditional memory allocation requests

– Wrapper controls the placement of new objects relative to existing ones

Eliminates overhead 
for most frequently 
accessed field

Replace traditional 
object allocator with 

locality enhancing 
allocator
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Selecting Candidates for Remapping

• Profile information is analyzed to characterize how 
well the data layout correlates with the program 
reference patterns
– Identify data types with poor memory performance along 

program hot-spots
– Build a model of data reuse for extensively used objects

• Analysis computes the Neighbor Affinity Probability 
(NAP) for each object type
– NAP ranges from 0 to 1, indicating the probability (from low 

to high) of a cache block successfully prefetching data

• The neighbor affinity probability is used as a criteria 
for selecting candidates for data remapping



25

CREST LCTES/SCOPES 16 July 2002
Georgia Institute of Technology http://www.crest.gatech.edu 

NAP Computation

• For a cache block of size B = 3
– Fields of x are in one block, those of y are in another and 

similarly, the fields of z belong to yet another block

• For an access j, does the current layout and block 
size deliver data that will be used in access j+1, j+2, 
…, j+B-1 ?

struct Node {
int A;
int B;
int C;

};

Node x, y, z;

Example C-style code. Node is a 
record with three fields. two example access patterns
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NAP Computation

struct Node {
int A;
int B;
int C;

};

Node x, y, z;

Example C-style code. Node is a 
record with three fields. two example access patterns

Given a program P, a memory access profile trace TR = (k, f )* of 
accesses to fields of a record of type R, and a block size B, let T[i] 
for 0 < i ≤ |T| represent the ith pair occurring in T

procedure ComputeAffinity (Program P, Trace T, RecordType R, BlockSize B)

for j ← B to |T| do
for i ← B - 1 downto 1 do

(k1, f1) ← T[ j ]
(k2, f2) ← T[ j – i ]
if (k1 ≠ k2) and if f1 and f2 may map to the same 
block, then increment NAP(R)

end for
end for
NAP(R) ← NAP(R) / B (|T| - B)

end ComputeAffinity

• B is a history window
• Running time is O(|T|)

– Incremental computation
• Records with NAP values less 

than a threshold are selected for 
remapping

In (a) the data layout matches the access 
pattern well – for B = 3, NAP = 7/9
In (b) an alternate layout is necessary – for 
B = 3, NAP = 0
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Frequently Asked Questions

• How to handle pointer arithmetic?
– Indexing into a record or indexing into an array
– Often possible for the compiler to adjust computation

• What to do about precompiled libraries?
– Blocked operations such as MEMCPY or QSORT
– May require recompilation or field-level alternative implementation

• What about profile sensitivity?
– Incomplete and competing memory access patterns
– Generalized matching problem is NP-complete
– Finer-level analysis of NAP

• How does data remapping compare to previously published 
efforts?
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Summary of Data Reorganization Strategies

No

Yes

N/A

Dynamic 
Object 

Relocation

NoNone
Negligible

3-5% increase in 
dynamic 

instruction count

Data 
Remapping

Yes
Moderate

various 
heuristics 
proposed

NoneObject 
Co-location

N/A

Object 
Allocation 
Overhead

No

Requires 
Programmer 
Assistance

NoneField 
Reordering

Access 
Function 
Overhead
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Presentation Outline

• Introduction

• Data Remapping Algorithm
– Overview
– Remapping of Global Data Objects
– Remapping of Heap Data Objects
– Analysis for Identifying Candidates for Remapping

• Evaluation Framework and Results
– Design Space Exploration via Data Remapping

• Concluding Remarks
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Implementation and Evaluation Framework

• Instruction Scheduling
• Register Allocation
• Caches-Aware 

Optimizations

Intermediate Representation

Execution or Simulation
Platforms

Q P

Cues
Program

Code Generation

Hardware Descriptions
ARM / StrongARM

Gated Clocks
Variable Frequency Clocks

Substrate Back-Bias
Dual Voltage Supply

Power Models

Power and 
Performance 

Feedback

• Profiling
• NAP Analysis
• Extract 

Parallelism
• High-level

Optimizations
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Modeling Energy Dissipation of the Caches

• Kamble and Ghose analytical models to measure energy 
dissipation
– International Symposium for Low Power Electronics and Design, 

August 1997
– Bit and word lines, input and output lines, sense amplifiers
– Estimation within 2% of dissipation for conventional caches

– About 30% error for some complex caches
– These organizations are not considered for the experiment

– Leakage current and I/O pads dissipation is not accounted for
– Require run-time statistics, cache organization

– Total cache accesses 
– Hit/miss counts for read and write accesses
– The number of write-backs 

– Also require various capacitance values
– Bit and word lines
– Gate and drain of a 6-transistor SRAM cell
– Input and output lines
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Benchmarks

• Benchmarks from SPEC, Olden and DIS suite
• 8 different bus and cache organizations

OLDEN

OLDEN

OLDEN

OLDEN

DIS

SPECFP00

SPECINT00

SUITE

TSP

TREEADD

PERIMETER

HEALTH

FIELD

179.ART

164.GZIP

Benchmark

40 / 320 Mb

64 / 512 Mb

146 / 147 Mb

41 / 123 Mb

Small

Small

Small

Memory Footprint

Quad tree

Binary tree

Quad tree

Linked list

Static array of records

Dynamic array of records

Dynamic array of records

Main Data Structure
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Data Remapping as a Compiler Optimization
Impact on Performance and Energy

• If we consider data remapping as a compiler optimization for a 
fixed cache configuration, what are the performance 
implications? 

% performance 
improvement

20.07Average
69.23Best
-0.02Worst

Primary
Cache

Primary
Cache

Secondary
Cache

Secondary
Cache

ProcessorProcessor

Main
Memory

Main
Memory

ICacheICache
An ARM like 
processor with 
32 Kb L1 and
1 Mb L2
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Design Space Optimization Via Data Remapping

• For a fixed cache configuration
– More primary cache hits increase energy dissipation
– Less secondary cache accesses

– Significant reduction in bus traffic and secondary cache 
accesses dramatically offset first level energy increases

– Hence we can achieve the same performance goal using 
smaller caches

– Less cache entries → less energy

49%
43%

8%

49%
40%

11%

CPU Energy
L1 Energy
L2 Energy

23.16 % savings in 
total energy

example 
energy 

breakdown

before 
remapping

after 
remapping
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Design Space Optimization Via Data Remapping

• If we halve the sizes of the primary and secondary caches, we 
can maintain performance goal using data remapping

• Performance goal satisfied using smaller primary cache size 
(16 Kb vs. 32 Kb) and smaller secondary cache (512 Kb vs. 
1024 Kb)

• 61% saving in $ cost for the cache subsystem

% energy 
reduction

57.141Average
84.654Best
38.046Worst
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Presentation Outline
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• Data Remapping Algorithm
– Overview
– Remapping of Global Data Objects
– Remapping of Heap Data Objects
– Analysis for Identifying Candidates for Remapping

• Evaluation Framework and Results
– Design Space Exploration via Data Remapping

• Concluding Remarks
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Summary and Remarks

• Data remapping is a novel data reorganization 
algorithm

• Compiler can play a role in design space 
exploration of memory systems
– Combined remapping and loop transformations

Data remapping for design space exploration of embedded 
cache systems. Rabbah R.M. and Palem K.V. To appear in the 
ACM Transactions on Embedded Computing Systems 2002.
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