Combining Data Remapping and Voltage/Frequency Scaling of Second Level Memory for Energy Reduction in Embedded Systems

Sudarshan K. Srinivasan, Jun Cheol Park and Vincent J. Mooney III Georgia Institute of Technology {darshan, jcpark, mooney}@ece.gatech.edu

Outline

- Introduction
- Motivation
- Related Work in Power Modeling
- Experimental Setup
- Data Remapping
- Voltage/Frequency Scaling of Off-chip Memory and Bus
- Experimental Results
- Conclusion

Introduction

- Power/energy is a major issue in embedded systems
- Mobile devices require longer usage time

Introduction (Cont.)

- Memory consumes up to 45% of the total system power*
- Memory is a main Nontarget for memory power/energy reduction

*P. Panda, N. Dutt, and A. Nicolau. *Memory Issues In Embedded Systems-On-Chip, Optimizations and Exploration*. Kluwer Academic Publishers, 1999.

Memory

Related Work in Power Modeling

- Simplescalar/ARM PowerAnalyzer*
 - Cycle level power/performance simulator
- SimplePower**
 - Architectural power estimation tool
 - Does not capture the energy of control unit of processor, clock generation

* http://www.eecs.umich.edu/~jringenb/power/ ** http://www.cse.psu.edu/~mdl/software.htm

Experimental Setup

Processor core power

Processor core power

- MARS (Michigan ARM Simulator)
 - A cycle accurate verilog model of a RISC processor
 - Capable of running ARM instructions

Processor core power

- Collect toggle rate of internal logic signals using Synopsys VCS simulation
- Synthesize verilog model using TSMC .25µ library

Processor core power

 Estimate power using Synopsys Power Compiler

- Off-chip bus power
 - Bus capacitance obtained from actual board
 - PCB board with SA110 processor (Skiff board)

- L1 and L2 caches energy
 - TRIMARAN*
 - Integrated compilation and performance monitoring infrastructure
 - ARM-like processor simulator
 - TRICEPS
 - Generate ARM code
 - SMACS (Smart Memory and Cache Hierarchy Simulator)
 - cache activity statistics
 - Kamble and Ghose model**

*TRIMARAN http://www.trimaran.org

**M. Kamble and K. Ghose "Analytical energy dissipation models for low power caches," Proceedings of the International Symposium on Low Power Electronics and Design, pp. 143-148, Aug. 1997.

Data Remapping*

- A compile time technique for performance enhancement and energy reduction
- Remapping data into new set such that data items that are more likely to be used together are grouped together into the same cache block
- Enhancing spatial locality

*K. Palem, R. Rabbah, P. Korkmaz, V. Mooney and K. Puttaswamy, "Design Space Optimization of Embedded Memory Systems via Data Remapping," *Proceedings of the Languages, Compilers, and Tools for Embedded Systems (LCTES'02),* pp. 28-37, June 2002.

Amount of data fetched before and after remapping (Traveling salesman problem in Olden Suite)

Jun Cheol Park Georgia Institute of Technology

ESCODES 24 Sep. 2002

- An item in memory is accessed by initiating a load of the contents of a memory location or address
- Since a memory access is expensive, a set of adjacent memory locations are loaded at the same time and stored in a *cache*
 - The set of adjacent memory locations is known as a memory block
 - Blocks do not overlap and have the same size
- Each address can be mapped to a block in memory

Data Objects

 Data reorganization is the relocation of data objects in memory

 Analyze application memory access pattern then remap data

Voltage/frequency scaling of off-chip memory and bus*

- Scaling down supply voltage of off-chip bus and memory (L2 cache)
 - P is proportional to V²
- Significant energy saving in L2 cache
- Doubling the memory access latency
- L2 cache miss rate affects system performance significantly

*K. Puttaswamy, K. Choi, J. C. Park, V. J. Mooney III, A. Chatterjee and P. Ellervee, System Level Power-Performance Trade-Offs in Embedded Systems Using Voltage and Frequency Scaling of Off-Chip Buses and Memory," *Proceedings of International Symposium on System Synthesis*, to appear, October, 2002, Kyoto, Japan.

Voltage/frequency scaling of off-chip memory and bus (Cont.)

Experimental Results

- Two Olden benchmarks (Health and Perimeter) are used
- The supply voltage for L2 cache and buses are scaled down to 2V, 50Mhz
- The benchmarks are remapped and simulated with 50Mhz L2 cache
- Half size L1 and L2 cache system is simulated
 - Data remapping can achieve same execution time with half cache resources

Experimental Results (Cont.)

Energy delay with frequency/voltage scaling of memory (FVM) and data remapping (DR) for health benchmark (L1 32KB 16B/line, L2 1MB 32B/line)

	Before DR, FVM	After DR	After FVM	After DR+FVM	After DR+FVM 1/2 size L1	After DR+FVM 1/2 size L2	After DR+FVM 1/2 size L1,L2
Execution Cycles	803645821	479612138	892552982	578046486	603275469	711151104	736311686
Delay (Execution Time)(s)	8.036	4.796	8.926	5.78	6.033	7.112	7.363
Energy(J)	17.076	10.360	14.316	9.274	9.468	11.158	10.134
Energy*Delay	137.231	49.687	127.778	53.608	57.118	79.35	74.618
% Energy Reduction	0	39.33	16.16	45.69	44.55	34.66	40.65
% Energy*Delay Reduction	0	63.79	6.89	60.94	58.38	42.18	45.63

Experimental Results (Cont.)

Energy delay with frequency/voltage scaling of memory (FVM) and data remapping (DR) for health benchmark (L1 32KB 16B/line, L2 1MB 32B/line)

- Maximum of 46% of energy reduction
- Energy consumption of the cache reduced by half after halving L1 and L2 cache without performance loss

Conclusion

- Combine of two techniques (HW & SW) to maximize energy reduction
- Achieve 46% of energy reduction without performance loss
- Achieve 1/2 energy consumption with half size cache, same performance

Thank you.