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Background

• Result:

I. Less control over the chip fabrication process

II. Possibility of malicious hardware being inserted 

into chips

• Different Levels of Skill:

I. Common thief

II. Technically sophisticated hacker

III. Industrial Espionage

IV. Government

HT found in counterfeit chips supplied to the government : 

(http://www.businessinsider.com/navy-chinese-microchips-

weapons-could-have-been-shut-off-2011-6)
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Prior Work in Hard to Detect Tiny 

Hardware Trojans

• S. Wei, K. Li, F. Koushanfar and M. Potkonjak, 

“Hardware Trojan Benchmark via Optimal 

Creation and Placement of Malicious 

Circuitry,” Design Automation Conference 

(DAC'12), pp. 90-95, June 2012
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Prior Work: Block Cypher PRESENT
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PRESENT

• Plain-text (64 bit): b63 … b0

• Round-key (64 bit): κ63 … κ0

bj � bj xor κji

• sBoxLayer:

• pLayer:

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[X] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

1 0 1 1 0 0 1 1
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+ + +...

P0 P1 Pn-1

S0 S1 Sn-1

Tn Tn-1 T1

Prior Work: Signature Generation 
Using a Multiple-Input Shift Reg (MISR) 
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Threat Scenarios
• Focus is on tiny HTs which affect functionality

• We do not discuss what to do after detection

• Side channel attacks are not considered
15
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THREAT SCENARIO (c)
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Scenario not Considered a Threat

• Simultaneous alteration of encrypted text & 

associated signature

• Mathematics for this not published

– Any such approach likely to require a large 

hardware footprint
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Transmitter with HT detection
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Simulation Results

• Used Mentor Graphics ModelSim PE 6.6b

• Clock Period of 10ns (100 MHz)

• HTs in encoder were triggered by:

a) 64 bit plain-text (0x0123456789ABCDEF)

b) Multiple occurrences (2, 4 and 8) of a 64 bit 
plain-text 

c) Sensitization of a rare node multiple times

d) Co-ordinated Attack between HT c) in encoder 
and an HT in the signature comparator
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Co-ordinated Hardware Trojan Attack

Plain Text

to MISR

Plaintext (PT) “PRESENT”

Encoder

Signature Gen.

MISR

Ciphertext (CT) TX_SIG

SIG 2

“PRESENT”

Decoder

Signature Gen.

MISR

Cryptkey1

Ciphertext (CT)

Cipher text

buffer

Signature

Compare

If signatures match or Counter = Required_delay release 

cipher text and signature

SIG 1

Cryptkey2

Sigkey

Cmpkey

Hardware Trojan C

Sigkey

Additional_delay

down_counter

Hardware Trojan D:

4 bit LFSR
delay

26© Georgia Institute of Technology, 2014



Synthesis Results

• Synthesized using Synopsys Design Compiler 
version 2010.12-SP3 for Linux and the NCSU 
45nm Base Kit

• Original design area = 12690

• Area of proposed design = 18502

• 45.79984% increase in area

27

COMPONENT AREA(sq. micron)

DECODER 6906

ENCODER 5784

SIGNATURE GENERATOR 2524

COMPARATOR 764
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Test Coverage (No Scan Reg)

28

Logic Block Fault Coverage

Controller 98.45%

Datapath 100.00%

Key Scheduler 96.81%

pLayer 100.00%

sBox 100.00%

PRESENT encoder 91.86%

Table 1. Fault Simulation Results – Encoder.
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Conclusion and Future Work

• The proposed architecture can detect any HT in encoder 
and also a coordinated HT attack  between encoder and 
signature comparator

• We need to look into the following:

a) Aliasing effect and how it can be exploited for a 
coordinated attack between encoder and decoder

b) Other coordinated attacks between different components

c) Choosing the optimum MISR configuration to strike a 
balance between test, area overhead and functionality

d) Replacing the MISR with a less HW intensive signature 
generator

e) Testing the comparator at run-time by knowingly using 
non-matching signatures

f) Input signatures in analog   
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