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ABSTRACT 
In this paper, we introduce a Round–robin Arbiter Generator (RAG) 
tool. The RAG tool can generate a design for a Bus Arbiter (BA). 
The BA is able to handle the exact number of bus masters for both 
on-chip and off-chip buses. RAG can also generate a distributed and 
parallel hierarchical Switch Arbiter (SA). The first contribution of 
this paper is the automated generation of a round-robin token 
passing BA to reduce time spent on arbiter design. The generated 
arbiter is fair, fast, and has a low and predictable worst-case wait 
time. The second contribution of this paper is the design and 
integration of a distributed fast arbiter, e.g., for a terabit switch, 
based on 2x2 and 4x4 switch arbiters (SAs). Using a .25µ TSMC 
standard cell library from LEDA Systems [10, 14], we show the 
arbitration time of a 256x256 SA for a terabit switch and 
demonstrate that the SA generated by RAG meets the time 
constraint to achieve approximately six terabits of throughput in a 
typical network switch design. Furthermore, our generated SA 
performs better than the Ping-Pong Arbiter and Programmable 
Priority Encoder by a factor of 1.9X and 2.4X, respectively. 

Categories and Subject Descriptors 
B.6.3 [Hardware]: Design Aids – Automatic synthesis, simulation  

General Terms: Design, Experimentation, Performance 

Keywords: arbiter, distributed arbiter, round-robin token passing, 
synthesis, terabit switch 
1. INTRODUCTION 
As the era of a billion transistors on a single chip fast approaches, 
more Processing Elements (PEs) can be placed on a System-on-a-
Chip (SoC). Most PEs in an SoC communicate with each other via 
buses and memory. As the number of bus masters increases in a 
single chip, the importance of fast and powerful arbiters commands 
more attention. Especially, a fast arbiter is one of the most dominant 
factors for high performance network switches [5]. Also, fast and 
efficient switch arbiters are needed to switch packets in a Network-
on-Chip (NoC) [1]. However, to design with high performance and 
fairness in arbitrations is a very tedious and error-prone task for 
designers.  

Fast arbitration schemes are intensively studied in computer 
networks. A major concern in computer networks today is the 
design of ultra high speed switches, which provide a high speed and 
cost-effective contention resolution scheme when multiple packets 
from different input ports compete for the same output port. This 
issue is extremely important in order to provide multimedia services 
for future Broadband Integrated Services Digital Networks (B-

ISDN) [2, 15]. We will show how our Round-robin Arbiter 
Generator (RAG) can help in the design of a terabit switch. 

2. TERMINOLOGY 
In this section, we define terms to describe Figure 1. Figure 1 shows 
the inputs and outputs of the crossbar switch fabric in a 32x32 
network switch. Note that we use the terms “switch” and “network 
switch” interchangeably throughout this paper. 
 

1) An MxN switch is an M-input by N-output switch. For 
example, a 32-input by 32-output device is a “32x32” 
device. Thus, there are 1024 (322) different possible 
connections where a “connection” is between a particular 
input port and a particular output port.  

2) Virtual Output Queues (VOQs) are typically employed in 
a packet switch to mitigate the head-of-line (HOL) block 
problem. HOL blocking occurs when a single FIFO input 
queue is used for each input port, and the packet in the head 
of the queue is blocked from being be forwarded to its 
corresponding output port due to port contention. By using 
separate input queues for each input/output port pair, the 
HOL blocking problem is solved [6].  

3) VOQ (m, n): m is the input port index, and n is the output 
port index. VOQ (l, m) implies VOQ at the lth input port 
destined to mth output port. VOQ (1, 0), for example, is the 
VOQ of input port 1 and queues packets destined to output 
port 0 as shown in Figure 1. 

4)  (MxV)xN: M is the number of input ports of an MxN 
switch. V is the number of VOQs per input port, and N is 
the number of output ports of an MxN switch. Note that the 
number of VOQs per input port (V) is typically equal to the 
total number of output ports (N) that can be requested from 
one input port. The multiplicative product of M multiplied 
by N is the total number of VOQs in an MxN switch. As the 
name of Virtual Output Queue (VOQ) implies, an input port 
considers its V VOQs as output ports. Also, the VOQs 
dedicated to a certain input port have the same input port 
index, as shown in Figure 2(a). For example, input port 0 as 
shown in  Figure 2(a) has thirty-two VOQs with the same 
input port index: from VOQ (0, 0) to VOQ (0, 31).  
Theoretically, to completely remove the HOL block 
problem, each input port requires N dedicated VOQs.  

5) (MxV)xN crossbar switch fabric: There are connections 
between (MxV) inputs (from VOQ (0, 0) to                 
VOQ (M-1, V-1)) and N outputs, the number of output 
ports in the switch fabric. As an example, Figure 1 shows a 
(32x32)x32 crossbar switch fabric.  

6) An MxM Switch Arbiter (SA) is a part of an (MxV)xN 
switch with M=V=N; thus, the number of requests (M) 
equals the number of grants (M).  An MxM SA controls M 
specific transmission gates between M VOQs and a 
particular output port.  At most one transmission gate is 
turned on at a time. In Figure 1, for example, signal 
grant (0, 31) from SA_31 turns on or off the transmission 
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gate between VOQ (0, 31) and output port 31. Signals 
grant (1, 31) through grant (31, 31) control the other 
thirty-one transmission gates.  The total number of MxM 
SAs needed for an (MxM)xM switch is equal to the number 
of output ports, M.  
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Figure 1.  Internal structure of (32x32)x32 crossbar switch   

       fabric and thirty-two 32x32 SAs of 32x32 network switch. 
 

7) An MxM distributed SA, equivalently an MxM 
hierarchical SA, plays the same role as an MxM SA. 
However, an MxM distributed SA is composed of smaller 
SAs in the form of a hierarchical tree structure. 

8) A root SA has the same input/output logic function as a 
regular SA except that there is no request signal output and 
no acknowledgement (“ack”) input. A root SA is used as the 
“root” SA in the tree structure of an MxM hierarchical SA; 
this use will become more clear in Section 4.2.  

9) A Bus Arbiter (BA) resolves bus conflicts when multiple 
bus masters request a bus in the same cycle. A BA allows 
access to a bus for the bus master whose request is granted. 
The input/output logic function of a BA and an SA are the 
same except that an SA has an extra “request” output. The 
use of this “request” output will become clear later in 
Section 4.2. The main difference between a BA and an SA 
is in typical use: a BA typically arbitrates buses while an SA 
typically resolves conflicts between input ports and output 
ports in a switch. 

In addition to an (MxV)xN crossbar switch fabric, the internal 
structure of an MxN network switch consists of VOQs and arbiters 
(there may be additional hardware components such as memory at 
the input port in case of the occurrence of VOQ overflows).  In 
Figure 1, we intentionally delete request connections to the 32x32 
Switch Arbiters (SAs) from VOQs to present a more compact and 
easy-to-read diagram. In Figure 2, however, we show request 
connections to SAs in more detail.  

3. RELATED WORK 
Current designs in Network-on-Chip (NoC) typically use standard 
round-robin token passing schemes for bus arbitration [1]. In 
computer network packet switching, previous research in round-
robin algorithms have reported results on an iterative round-robin 
algorithm (iSLIP) [3] and a dual round-robin matching (DRRM) 
algorithm [4].  Furthermore, Chao et al. describe a design of a 
round-robin arbiter for a packet switch [5]. Chao et al. refer to their 
hardware design as a Ping Pong Arbiter (PPA). In general, the goal 

of a switch arbiter in a packet switch is to provide control signals to 
the crossbar switch fabric as shown in Figure 2(a). In a packet 
switch design, one must keep in mind that each input port can 
potentially request connections to all output ports (e.g., in the case 
of broadcast). Theoretically, to avoid the HOL block problem, in a 
packet switch with M input ports and N output ports, each input is 
allocated N VOQs (one per output) for a total of N2 VOQs in the 
packet switch. In general, an MxN switch can have fewer VOQs 
than N to save cost and area at some slight cost of occasional HOL 
blocking. However, we assume V=N VOQs in this paper.  
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Figure 2(a). 32x32 network switch architecture. 
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Figure 2(b). 32x32 Switch Arbiter (SA). 
 

Figure 2(a) shows a 32x32 network switch with thirty-two input 
ports and thirty-two output ports. Each input port can request 
between zero (none) and thirty-two (all) connections to output ports. 
To accomplish this, thirty-two 32x32 Switch Arbiters (SAs), shown 
in the bottom right hand side of Figure 2(a), take as input 322 
requests (req (0, 0), req (0, 1), …, req (31, 30), req (31, 31) − 
32 requests per input port, or one request per VOQ) and translates 
those requests into 322 grant signals (one grant signal per possible 
VOQ to output connection) where at most one grant signal per 
output port is set to ‘1’ on each clock cycle (thus, of the 322 grant 
signals, at most 32 are set to ‘1’ each clock cycle).   

Figure 2(b) shows one 32x32 SA out of the thirty-two 32x32 SAs. 
Each SA grants one request out of at most 32 requests from thirty-
two VOQs. Each input of the 32x32 SA in Figure 2(b) is connected 
to a specific VOQ (one per input port) which may request output 
port 0. The thirty-two outputs of the 32x32 SA are grant signals 
indicating which of the 32 VOQs is granted output port 0 (note that 
if no VOQ requests the output port, then all grant signals will be ‘0’ 
in this case). For example, grant (31, 0) signals the crossbar switch 
fabric in Figure 2(a) to connect VOQ (31, 0) to output port 0. 
Since the performance bottleneck of an MxN network switch is the 
MxM SA [5], we show how our tool can generate a fast and 
efficient MxM SA.  

The iSLIP algorithm uses in its implementation MxM SAs.  The 
iSLIP authors implement an MxM SA in hardware which they call a 
Programmable Priority Encoder (PPE) [8].  In Section 6, 



Experimental Results, we will compare a 128x128 SA generated by 
RAG to a PPE implementing a 128x128 SA and show a speedup of 
2.4X. Similarly, we will compare a 128x128 SA generated by RAG 
to a 128x128 SA implemented by the PPA hardware described by 
Chao et al. [5], and we will show a speedup of 1.9X over PPA 
hardware.  

4. ROUND-ROBIN ARBITER DESIGN 
A round-robin token passing bus or switch arbiter guarantees 
fairness (no starvation) among masters and allows any unused time 
slot to be allocated to a master whose round-robin turn is later but 
who is ready now. A reliable prediction of the worst-case wait time 
is another advantage of the round-robin protocol. The worst-case 
wait time is proportional to number of requestors minus one. The 
protocol of a round-robin token passing bus or switch arbiter works 
as follows. In each cycle, one of the masters (in round-robin order) 
has the highest priority (i.e., owns the token) for access to a shared 
resource. If the token-holding master does not need the resource in 
this cycle, the master with the next highest priority who sends a 
request can be granted the resource, and the highest priority master 
then passes the token to the next master in round-robin order.  

Section 4.1 shows the design of the Bus Arbiter (BA) generated by 
our tool, and Section 4.2 presents a sample design of a 32x32 
Switch Arbiter (SA) using our tool. A BA generated by our Round-
robin Arbiter Generator (RAG) tool can handle any number of 
masters, while MxM SAs generated by RAG have a hierarchical 
structure. 

4.1 Bus Arbiter Design 
Figure 3 show a BA generated to handle four requests. Figure 3(a) 
shows the BA block diagram for four bus masters. To generate a 
BA, RAG takes as input the number of masters and produces 
synthesizable Verilog code at the RTL level. Figure 3(b) shows the 
logic diagram for a 4x4 generated by RAG.  

 

Figure 3(a). Bus arbiter block diagram. 

The generated BA consists of a D flip-flop, priority logic blocks, an 
M-bit ring counter and M M-input OR gates as shown in 
Figure 3(b) where M=4. A 4x4 priority logic block is implemented 
in combinational logic implementing the logic function of Table 1. 
The priority of inputs are placed in descending order from in[0] to 
in[3] in the priority logic blocks (Priority Logic 0 through 3) shown 
in Figure 3(b).  Thus, in[0] has the highest priority, in[1] has the 
next priority, and so on.  To implement a BA, we employ the token 
concept from a token ring in a network. The possession of the token 
allows a priority logic block to be enabled. Since each priority logic 
block has a different order of inputs (request signals), the priority of 
request signals varies with the chosen priority logic block. The token 
is implemented in a 4-bit ring counter as shown in Figure 3(b).  
The outputs (four bits) of the ring counter act as the enable signals 
to the priority logic blocks. Thus, only one enabled priority logic 
block can assert a grant signal. The ack signal to the bus arbiter is 
delayed by one arbitration cycle by a D flip-flop as shown in 
Figure 3(b). The delayed ack signal pulls a trigger to the ring 
counter so that the content of the ring counter is rotated one bit. 
Thus, the token bit is rotated left each cycle, with 4’b1000 rotating 
to 4’b0001 in Figure 3(b), and the token is initialized to one at the 
reset phase (e.g., 4’b0001 for four-bit ring counter) so that there is 

only one ‘1’ output by the ring counter. In the round-robin 
algorithm, each master must wait no longer than (M-1) time slots, 
the period of time allocated to the chosen master, until the next time 
it receives the token (i.e., highest priority). The assigned time slot 
can also be yielded to another master if the owner of the time slot 
has nothing to send [12]. This protocol guarantees a dynamic 
priority assignment to bus masters (requestors) without starvation. 
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Figure 3(b). Logic diagram of 4x4 bus arbiter block. 

Table 1.  Truth table of a 4x4 priority logic block. 

100010001

0100X1001

0010XX101

0001XXX11

0000XXXX0

output [3]output [2]output [1]output [0]in [3]in [2]in [1]in [0]EN

100010001

0100X1001

0010XX101

0001XXX11

0000XXXX0

output [3]output [2]output [1]output [0]in [3]in [2]in [1]in [0]EN

 
 

Example.  Consider a scenario with four processors as bus masters 
connected to the same bus with one large shared memory on the bus 
as a slave. Suppose the token is 4 (token=4’b0100, which means 
processor 2 has the token), and only processor 0 (which uses req[0]) 
and processor 1 (req[1]) want to access the memory at this cycle.  
Token=4’b0100 leads to the enabling of only Priority Logic 2 in 
Figure 3(b). In Priority Logic 2, the connection to in[0] (req[2] from 
processor 2) indicates the highest priority.  Since req[3] is connected 
to in[1] of Priority Logic 2 in Figure 3(b), processor 3 has the next 
highest priority.  However, since neither processor 2 nor processor 3 
make a request, in[2] which is connected to req[0] is next in line in 
priority.  Thus, processor 0 is granted access to the memory, and 
then the memory controller of the accessed memory sends an ack 
signal, whose connection to the BA is shown in Figure 3(a), indicating 
when the memory transaction is successfully completed. Next, which 
could be several processor clock cycles later, the token is passed to 
processor 3 (the 4-bit ring counter is rotated when the ack signal is 
received) in which case the token is 4’b1000.  

4.2 Switch Arbiter Design 
The SA generated by RAG uses 2x2 and 4x4 switch arbiter blocks 
to implement an MxM switch arbiter. RAG is most efficient when 
M is a power of two. Figures 4(a) and 4(b) show how bus arbiters 
are modified for switch arbiter implementation by adding some 
AND and OR gates to a BA. Request signals of the current level are 
ORed together to generate just one request to the higher level, and 
grant signals are ANDed together with an ack input (active high) 
from the higher level so that the only granted switch arbiter block 
can grant the corresponding master.  



A root SA is placed at the top level in the hierarchy. Since there is 
no higher SA in the hierarchy, root SAs have no ack input nor req 
output as shown in Figures 4(c) and 4(d). The input/output logic of 
a 2x2 root SA and a 4x4 root SA are the same as that of a 2x2 BA 
and a 4x4 BA except that there is no ack input and no D flip-flop in 
front of the ring counter: thus, the clock input is used to rotate the 
content (token bits) of the ring counter. 
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        Figure 4(a). 2x2 SA.                    Figure 4(b). 4x4 SA. 
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      Figure 4(c). 2x2 root SA.           Figure 4(d).  4x4 root SA. 
 
These 2x2 and 4x4 switch arbiter blocks can be composed into a 
tree structure as shown in Figure 5 (the leftmost blocks are the 
leaves and the rightmost block is the root). Non-root 2x2 and 4x4 
switch arbiter blocks receive an acknowledgement from a switch 
arbiter block at the next higher level (which translates to being 
further towards the right hand side of Figure 5) for the next 
arbitration cycle. Since the root SA in the hierarchy does not receive 
an acknowledgement (because there is no higher level switch arbiter 
block), the root arbiter takes the clock input so that a token is 
passed to the next master in every arbitration cycle in round-robin 
order. 

To reduce the number of levels in the hierarchical Switch Arbiter 
(SA), we use as many 4x4 switch arbiter blocks as possible because 
the area of a 4x4 switch arbiter block is less than the area of 
employing two levels of 2x2 switch arbiter blocks to handle four 
requests, for a total of three 2x2 switch arbiter blocks: two leaves 
and one root. Moreover, the delay of a 4x4 switch arbiter block is 
0.34ns in a TSMC .25µm library from LEDA Systems [10, 14] 
which is less than the delay of implementing a hierarchical 4x4 SA 
using two levels of 2x2 switch arbiters: 0.46ns using the same 
library. This comparison is discussed in detail in [13]. 

Figure 5 shows the configuration of 32x32 SA for a 32 x32 fast 
switch. This hierarchical switch arbiter is a distributed switch arbiter 
whose individual 2x2 and 4x4 SAs operate in parallel with one 
another. In other words, the upper level switch arbiters (relatively 
located at the right side of Figure 5) arbitrate the ORed requests 
from the lower level switch arbiters in Figure 5, while a internal BA 
of a lower level SA grants one request regardless of an ack signal 
from the higher level. A lower level SA ANDs the outputs of its 
internal BA grant signals with its ack input.  The end result is to 
guarantee that at most one grant out of 32 grants is logic ‘1’. Note 
that ack signals from higher levels are also input to a D-flip-flop in 
the BA internal to each SA in order to potentially rotate the token bit 
in the next arbitration cycle. More detail about Figure 5, including 
the critical path, is contained in [13]. 

This scheme of Figure 5 results in area savings and delay savings 
compared with a centralized arbiter. Even more, the design of a class 

of hierarchical SAs similar to Figure 5 is automated by the RAG 
tool. 
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Figure 5.  Hierarchical switch arbiter for 32 x 32 switch  

(Note: reset signal not shown). 
 

5. IMPLEMENTATION OF THE RAG TOOL 
Our Round-robin Arbiter Generator (RAG) tool can generate 
synthesizable Verilog for a BA able to handle any number of 
requests. RAG can also combine switch arbiter blocks (2x2 and 4x4 
switch arbiters) to produce synthesizable Verilog for a hierarchical 
fast MxM switch arbiter.  

5.1 RAG Tool 
Figure 6 shows the flow of RAG. First, the user chooses the arbiter 
type (bus or switch) and the number of masters for the chosen 
arbiter type. The algorithm for a bus arbiter is straightforward 
because the tool just generates bus arbiter logic for the exact number 
of masters. The truth table shown in Table 1 shows the regular 
pattern as the number of masters, M increases and is implemented 
with simple logic equation in Verilog for the generation of a BA. 
From Figures 7 and 8, it turns out that employing a Switch Arbiter 
(SA) to implement the BA logic is better in terms of area and speed 
when M is greater than 4 at the possible waste of ports for the case 
that M is not a power of 2 [13]. In short, a parametrizable Verilog 
version of Table 1 suffices to generate a BA with any specific 
number of masters.  

For an MxM Switch Arbiter (SA), the tool divides M by 4 to decide 
the maximum allowable number of 4x4 switch arbiters that can be 
used in an MxM SA. First, 4x4 switch arbiters are employed as 
many as the quotient of M divided by 4. If M modulo 4 is not equal 
to 0, a 2x2 switch arbiter is employed when the remainder is less 
than 3. Otherwise another 4x4 switch arbiter is employed with one 



unused request (one request signal, say req[0] in Figure 4(a), is set 
to ‘0’).  To get the optimum performance, M is preferred to be a 
power of two. 
After the tool decides the number of 2x2 and 4x4 switch arbiter 
blocks for each level in the tree structure, the tool will integrate 
switch arbiters for each level and produce an MxM SA. More 
algorithm detail, including pseudo code, is available in a technical 
report [13].  
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2. Number of masters

generate M x M
bus arbiter
gen_arb();
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Figure 6.  Flow of RAG tool. 

5.2 Area and delay considerations 
Figures 7(a) and 7(b) show the area and delay, respectively, of BAs 
generated by RAG. The area increases more than linearly as the 
number of masters (M) increases. As can be seen in Figure 7(b), 
delay increases linearly as M increases. Our tool can generate a bus 
arbiter that can handle the exact number of masters (including non-
powers of two). From Figures 7 and 8, for minimal area and delay it 
is better to employ SA when the number of bus masters is greater 
than 4 and is a power of two. However, when the number of masters 
is not a power of two, a user might prefer to choose a bus arbiter 
option in our tool because of possible waste of ports in the SA. 
Figure 7 and Figure 8 help a user to choose between BA and SA 
options with consideration of area and delay.  
As shown in Figure 7(b), the increasing delay for our generated BA 
as M increases will limit the achievable switching speed in a fast 
switch. We found that limiting the size of the switch arbiter blocks, 
used as the components of a SA, to 2x2 and 4x4 yielded the fastest 
switching speeds. Our RAG tool is favored to utilize 4x4 switch 
arbiter blocks rather than 2x2 switch arbiter blocks. Employing 4x4 
switch arbiter blocks gives 16% area saving and 36% gate delay 
reduction compared with using three 2x2 switch arbiter blocks (two 
for leaves and one for a root to implement 4x4 switch arbiter block).  

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35

Number of Masters

B
A

 a
re

a 
in

 th
e 

n
u
m

b
er

 o
f 

IN
V

E
T
E

R
 g

at
es

 e
q
u
iv

al
en

ts
 w

ith
 

T
S

M
C

 .2
5u

m

 
Figure 7(a). Area of MxM bus arbiter 
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Figure 7(b). Delay of MxM bus arbiter 

6. EXPERIMENTAL RESULTS 
In this section, we first compare area and delay between a Ping-
Pong Arbiter (PPA) [5], a Programmable Priority Encoder 
(PPE) [8] for iSLIP [3], and our generated Switch Arbiter (SA).  
Then will show a speedup for our generated SA over a PPA and a 
PPE. First, we explain areas and delays of the three switch arbiters, 
then the speedups achieved by the SA generated by RAG.  

6.1 Areas and Delays 
PPA uses a 2x2 switch arbiter as a basic switch arbiter block. PPA 
applies 2x2 switch arbiters to a binary tree structure to form an 
MxM switch arbiter. Whenever one master is granted by a 2x2 
switch arbiter, the other master is guaranteed to be granted for the 
next cycle. The treatment of upper level grant signals in the binary 
tree is similar to SA in Figure 4(a). One difference is that every 2x2 
switch arbiter of PPA receives acknowledgements from two higher 
levels and ANDs them together with the current level grants.  
A PPE for iSLIP is a centralized switch arbiter.  PPE adds a 
programmable functionality to the priority encoder so that the grant 
pointer can point to the next request after the current arbitration [8]. 
The delay and area of priority encoder in PPE becomes larger as M 
increases and is shown in Figure 8 (a) and Figure 8(b).  
In [5], the authors compare PPA with iSLIP [3] and DRRM [4].  
Note that DRRM is not implemented in hardware. The performance 
of PPA is very competitive with speedup c=2. The speedup c of the 
switch fabric is the ratio of the switch fabric bandwidth and input 
link bandwidth. Since the arbitration protocol of SA is almost the 
same as that of PPA, we assume that the performance of a packet 
switch using SA and a packet switch using PPA are comparable 
with each other, with the major difference only in logic (arbitration) 
delay which was found to be the critical path. Thus, we just compare 
the area and the longest delay of SA with those of PPA and PPE for 
iSLIP in different MxM configurations.  
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Figure 8(a). The area of MxM switch arbiter.  
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Figure 8(b). The longest delay of MxM switch arbiter 

Figures 8 (a) and 8(b) show the area and the longest switch arbiter 
logic delays of SA, PPE1 and PPA2, respectively. The areas of all 
switch arbiters increase linearly as M increases. SA shows the 
shortest logic delay when compared with PPE and PPA, and the 
logic delay increases the slowest (compared with PPE and PPA) as 
M increases from 32 to 128. This is because we first limit the size of 
basic switch arbiters to 2x2 and 4x4 to reduce the critical path delay 
due to the expansion of priority logic blocks as M increases and 
apply the 2x2 and 4x4 switch arbiters to a distributed structure so 
that the number and delay of the switch arbiter block(s) in the 
critical path is minimized. Since PPE is a centralized switch arbiter, 
its delay is longest. Even though PPA is also a distributed switch 
arbiter, it has more levels than SA causing more gate delays to 
connect switch arbiters in different levels.  

6.2 Speedup for a Terabit switch  
For comparison purposes with PPA and PPE, suppose we have a 
128x128 switch with eight-byte cell size, and the speed of the serial 
link is wholly determined by the arbitration cycles. Thus, the serial 
link capacity is equal to 64-bit/128x128 switch arbiter delay. Then 
the aggregated bps capacities of SA, PPA, and PPE are 6.16Tbps, 
3.18Tbps, and 2.59Tbps, respectively. This can be verified by using 
the delays for SA, PPA, and PPE shown in Figure 8(b). Thus, for 
this comparison, the RAG generated arbiter achieves throughput 
1.9X higher than PPA and 2.4X higher than PPE.  

Currently some commercial terabit switches are available. One is 
from Mindspeed, M21155 [9, 16]. M21155 is a 144-port x144-port 
switch, each port delivering a data rate of up to 3.125Gbps; the 
aggregate capacity is 0.45Tbps. The other is PetaSwitch [11] from 
PetaSwitch Solutions, Inc. PetaSwitch claims that their chipset 
allows configuration of a switch for data rates from Gigabit 
Ethernet/OC-48 to OC-3072 and port numbers from 2x2 to 
256x256. The aggregate bandwidth, PetaSwitch claims, can be 
configured from 40 Gbps to 10.24Tbps depending on the number of 
ports and the data rate of port. Unfortunately, no information about 
the switch arbitration logic nor the process technology (e.g., .25µm) 
used is publicly available for either of these chips. 

                                                                 
1 The area of PPE is synthesized and complied with Texas Instruments 

TSC5000 0.25µm technology [8], while SA and PPA with TSMC 
0.25µm technology. We modeled the PPE as shown in Figure 11 of [8] 
to measure the delay with TSMC 0.25 technology. The delay measured 
here is well matched with Table 2 in [8] except M=32. More details 
about the comparisons are contained in [13] 

2 We modeled PPA by writing Verilog code based on the logic diagram 
in [5] and synthesized using the Design Compiler [7] to estimate the 
area and delay. 

7. CONCLUSION 
In this paper, we introduced a Round–robin Arbiter Generator 
(RAG) tool. RAG can generate a BA to handle the exact number of 
bus masters for both on-chip and off-chip buses. RAG can also 
generate a parallel hierarchical MxM switch arbiter. We discussed 
the BA logic and showed the logic of 2x2 and 4x4 SA components. 
We also presented how RAG uses 2x2 and 4x4 switch arbiter blocks 
to produce a hierarchical MxM switch arbiter. The first contribution 
of this paper is the automated generation of a round-robin token 
passing Bus Arbiter (BA) to reduce bus design time. The generated 
BA is fair, fast, and has a low and predictable worst-case wait time. 
The second contribution of this paper is the automated generation of 
an MxM SA. We compared the area and delay of our generated SAs 
with PPA and PPE. It turns out that our distributed switch arbiters 
generated by RAG lead to significant area and delay improvements 
when compared with other switch arbiters such as PPA and PPE. 
Specifically, RAG can be used to generate a switch arbiter for a 
128x128 terabit switch which, assuming as stated in [5] that the 
critical path is the switch arbitration logic, achieves throughput 1.9X 
higher than PPA and 2.4X higher than PPE for the same 128x128 
configuration.  
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