
Round-robin Arbiter Design and Generation
Eung S. Shin, Vincent J. Mooney III and George F. Riley

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA, 30332
{eung, mooney, riley}@ece.gatech.edu

ABSTRACT
In this paper, we introduce a Round–robin Arbiter Generator (RAG)
tool. The RAG tool can generate a design for a Bus Arbiter (BA).
The BA is able to handle the exact number of bus masters for both
on-chip and off-chip buses. RAG can also generate a distributed and
parallel hierarchical Switch Arbiter (SA). The first contribution of
this paper is the automated generation of a round-robin token
passing BA to reduce time spent on arbiter design. The generated
arbiter is fair, fast, and has a low and predictable worst-case wait
time. The second contribution of this paper is the design and
integration of a distributed fast arbiter, e.g., for a terabit switch,
based on 2x2 and 4x4 switch arbiters (SAs). Using a .25µ TSMC
standard cell library from LEDA Systems [10, 14], we show the
arbitration time of a 256x256 SA for a terabit switch and
demonstrate that the SA generated by RAG meets the time
constraint to achieve approximately six terabits of throughput in a
typical network switch design. Furthermore, our generated SA
performs better than the Ping-Pong Arbiter and Programmable
Priority Encoder by a factor of 1.9X and 2.4X, respectively.

Categories and Subject Descriptors
B.6.3 [Hardware]: Design Aids – Automatic synthesis, simulation

General Terms: Design, Experimentation, Performance

Keywords: arbiter, distributed arbiter, round-robin token passing,
synthesis, terabit switch
1. INTRODUCTION
As the era of a billion transistors on a single chip fast approaches,
more Processing Elements (PEs) can be placed on a System-on-a-
Chip (SoC). Most PEs in an SoC communicate with each other via
buses and memory. As the number of bus masters increases in a
single chip, the importance of fast and powerful arbiters commands
more attention. Especially, a fast arbiter is one of the most dominant
factors for high performance network switches [5]. Also, fast and
efficient switch arbiters are needed to switch packets in a Network-
on-Chip (NoC) [1]. However, to design with high performance and
fairness in arbitrations is a very tedious and error-prone task for
designers.

Fast arbitration schemes are intensively studied in computer
networks. A major concern in computer networks today is the
design of ultra high speed switches, which provide a high speed and
cost-effective contention resolution scheme when multiple packets
from different input ports compete for the same output port. This
issue is extremely important in order to provide multimedia services
for future Broadband Integrated Services Digital Networks (B-

ISDN) [2, 15]. We will show how our Round-robin Arbiter
Generator (RAG) can help in the design of a terabit switch.

2. TERMINOLOGY
In this section, we define terms to describe Figure 1. Figure 1 shows
the inputs and outputs of the crossbar switch fabric in a 32x32
network switch. Note that we use the terms “switch” and “network
switch” interchangeably throughout this paper.

1) An MxN switch is an M-input by N-output switch. For
example, a 32-input by 32-output device is a “32x32”
device. Thus, there are 1024 (322) different possible
connections where a “connection” is between a particular
input port and a particular output port.

2) Virtual Output Queues (VOQs) are typically employed in
a packet switch to mitigate the head-of-line (HOL) block
problem. HOL blocking occurs when a single FIFO input
queue is used for each input port, and the packet in the head
of the queue is blocked from being be forwarded to its
corresponding output port due to port contention. By using
separate input queues for each input/output port pair, the
HOL blocking problem is solved [6].

3) VOQ (m, n): m is the input port index, and n is the output
port index. VOQ (l, m) implies VOQ at the lth input port
destined to mth output port. VOQ (1, 0), for example, is the
VOQ of input port 1 and queues packets destined to output
port 0 as shown in Figure 1.

4) (MxV)xN: M is the number of input ports of an MxN
switch. V is the number of VOQs per input port, and N is
the number of output ports of an MxN switch. Note that the
number of VOQs per input port (V) is typically equal to the
total number of output ports (N) that can be requested from
one input port. The multiplicative product of M multiplied
by N is the total number of VOQs in an MxN switch. As the
name of Virtual Output Queue (VOQ) implies, an input port
considers its V VOQs as output ports. Also, the VOQs
dedicated to a certain input port have the same input port
index, as shown in Figure 2(a). For example, input port 0 as
shown in Figure 2(a) has thirty-two VOQs with the same
input port index: from VOQ (0, 0) to VOQ (0, 31).
Theoretically, to completely remove the HOL block
problem, each input port requires N dedicated VOQs.

5) (MxV)xN crossbar switch fabric: There are connections
between (MxV) inputs (from VOQ (0, 0) to
VOQ (M-1, V-1)) and N outputs, the number of output
ports in the switch fabric. As an example, Figure 1 shows a
(32x32)x32 crossbar switch fabric.

6) An MxM Switch Arbiter (SA) is a part of an (MxV)xN
switch with M=V=N; thus, the number of requests (M)
equals the number of grants (M). An MxM SA controls M
specific transmission gates between M VOQs and a
particular output port. At most one transmission gate is
turned on at a time. In Figure 1, for example, signal
grant (0, 31) from SA_31 turns on or off the transmission

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

gate between VOQ (0, 31) and output port 31. Signals
grant (1, 31) through grant (31, 31) control the other
thirty-one transmission gates. The total number of MxM
SAs needed for an (MxM)xM switch is equal to the number
of output ports, M.

32 x 32 SA_0

. . .

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
31

, 0
)

VOQ (0, 0)

VOQ (1, 0)

VOQ (31, 0)

.

.

.

.

.

.

32 x 32 SA_31

. . .

gr
an

t (
0,

 3
1)

gr
an

t (
1,

 3
1)

gr
an

t (
31

, 3
1)

VOQ (0, 31)

VOQ (1, 31)

VOQ (31, 31)

.

.

.

.

.

.

(32x32)x32 Crossbar Switch Fabric

Thirty-two 32x32 SAs

output port 0

output port 31

. . .

.

.

.

.

.

.

32 x 32 SA_0

. . .

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
31

, 0
)

VOQ (0, 0)

VOQ (1, 0)

VOQ (31, 0)

.

.

.

.

.

.

VOQ (0, 0)

VOQ (1, 0)

VOQ (31, 0)

.

.

.

.

.

.

32 x 32 SA_31

. . .

gr
an

t (
0,

 3
1)

gr
an

t (
1,

 3
1)

gr
an

t (
31

, 3
1)

VOQ (0, 31)

VOQ (1, 31)

VOQ (31, 31)

.

.

.

.

.

.

(32x32)x32 Crossbar Switch Fabric

Thirty-two 32x32 SAs

output port 0

output port 31

. . .

.

.

.

.

.

.

Figure 1. Internal structure of (32x32)x32 crossbar switch

 fabric and thirty-two 32x32 SAs of 32x32 network switch.

7) An MxM distributed SA, equivalently an MxM
hierarchical SA, plays the same role as an MxM SA.
However, an MxM distributed SA is composed of smaller
SAs in the form of a hierarchical tree structure.

8) A root SA has the same input/output logic function as a
regular SA except that there is no request signal output and
no acknowledgement (“ack”) input. A root SA is used as the
“root” SA in the tree structure of an MxM hierarchical SA;
this use will become more clear in Section 4.2.

9) A Bus Arbiter (BA) resolves bus conflicts when multiple
bus masters request a bus in the same cycle. A BA allows
access to a bus for the bus master whose request is granted.
The input/output logic function of a BA and an SA are the
same except that an SA has an extra “request” output. The
use of this “request” output will become clear later in
Section 4.2. The main difference between a BA and an SA
is in typical use: a BA typically arbitrates buses while an SA
typically resolves conflicts between input ports and output
ports in a switch.

In addition to an (MxV)xN crossbar switch fabric, the internal
structure of an MxN network switch consists of VOQs and arbiters
(there may be additional hardware components such as memory at
the input port in case of the occurrence of VOQ overflows). In
Figure 1, we intentionally delete request connections to the 32x32
Switch Arbiters (SAs) from VOQs to present a more compact and
easy-to-read diagram. In Figure 2, however, we show request
connections to SAs in more detail.

3. RELATED WORK
Current designs in Network-on-Chip (NoC) typically use standard
round-robin token passing schemes for bus arbitration [1]. In
computer network packet switching, previous research in round-
robin algorithms have reported results on an iterative round-robin
algorithm (iSLIP) [3] and a dual round-robin matching (DRRM)
algorithm [4]. Furthermore, Chao et al. describe a design of a
round-robin arbiter for a packet switch [5]. Chao et al. refer to their
hardware design as a Ping Pong Arbiter (PPA). In general, the goal

of a switch arbiter in a packet switch is to provide control signals to
the crossbar switch fabric as shown in Figure 2(a). In a packet
switch design, one must keep in mind that each input port can
potentially request connections to all output ports (e.g., in the case
of broadcast). Theoretically, to avoid the HOL block problem, in a
packet switch with M input ports and N output ports, each input is
allocated N VOQs (one per output) for a total of N2 VOQs in the
packet switch. In general, an MxN switch can have fewer VOQs
than N to save cost and area at some slight cost of occasional HOL
blocking. However, we assume V=N VOQs in this paper.

Network Switch (32x32)

Crossbar
Switch
Fabric

(32x32)x32

32 (32x32 arbiter)s

… … …

VOQ(0,31)

VOQ(0,0)

.

.

.input port 0

VOQ(31,0)

.

.

.
VOQ(31,31)

input port 31

.

.

.

.

.

.

output port 31

output port 0

.

..

.

.

.

.

..

req(0, 0)

req(31, 31)

grant(0, 0-31) grant(31, 0-31)

Network Switch (32x32)

Crossbar
Switch
Fabric

(32x32)x32

32 (32x32 arbiter)s

… … …

VOQ(0,31)

VOQ(0,0)

.

.

.input port 0

VOQ(31,0)

.

.

.
VOQ(31,31)

input port 31

.

.

.

.

.

.

output port 31

output port 0

.

..

.

.

.

.

..

req(0, 0)

req(31, 31)

grant(0, 0-31) grant(31, 0-31)

Figure 2(a). 32x32 network switch architecture.

32x32 SA

req (0, 0)

req (1, 0)

req (31, 0)

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
31

, 0
)

…

…

32x32 SA

req (0, 0)

req (1, 0)

req (31, 0)

gr
an

t (
0,

 0
)

gr
an

t (
0,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
1,

 0
)

gr
an

t (
31

, 0
)

gr
an

t (
31

, 0
)

…

…

Figure 2(b). 32x32 Switch Arbiter (SA).

Figure 2(a) shows a 32x32 network switch with thirty-two input
ports and thirty-two output ports. Each input port can request
between zero (none) and thirty-two (all) connections to output ports.
To accomplish this, thirty-two 32x32 Switch Arbiters (SAs), shown
in the bottom right hand side of Figure 2(a), take as input 322
requests (req (0, 0), req (0, 1), …, req (31, 30), req (31, 31) −
32 requests per input port, or one request per VOQ) and translates
those requests into 322 grant signals (one grant signal per possible
VOQ to output connection) where at most one grant signal per
output port is set to ‘1’ on each clock cycle (thus, of the 322 grant
signals, at most 32 are set to ‘1’ each clock cycle).

Figure 2(b) shows one 32x32 SA out of the thirty-two 32x32 SAs.
Each SA grants one request out of at most 32 requests from thirty-
two VOQs. Each input of the 32x32 SA in Figure 2(b) is connected
to a specific VOQ (one per input port) which may request output
port 0. The thirty-two outputs of the 32x32 SA are grant signals
indicating which of the 32 VOQs is granted output port 0 (note that
if no VOQ requests the output port, then all grant signals will be ‘0’
in this case). For example, grant (31, 0) signals the crossbar switch
fabric in Figure 2(a) to connect VOQ (31, 0) to output port 0.
Since the performance bottleneck of an MxN network switch is the
MxM SA [5], we show how our tool can generate a fast and
efficient MxM SA.

The iSLIP algorithm uses in its implementation MxM SAs. The
iSLIP authors implement an MxM SA in hardware which they call a
Programmable Priority Encoder (PPE) [8]. In Section 6,

Experimental Results, we will compare a 128x128 SA generated by
RAG to a PPE implementing a 128x128 SA and show a speedup of
2.4X. Similarly, we will compare a 128x128 SA generated by RAG
to a 128x128 SA implemented by the PPA hardware described by
Chao et al. [5], and we will show a speedup of 1.9X over PPA
hardware.

4. ROUND-ROBIN ARBITER DESIGN
A round-robin token passing bus or switch arbiter guarantees
fairness (no starvation) among masters and allows any unused time
slot to be allocated to a master whose round-robin turn is later but
who is ready now. A reliable prediction of the worst-case wait time
is another advantage of the round-robin protocol. The worst-case
wait time is proportional to number of requestors minus one. The
protocol of a round-robin token passing bus or switch arbiter works
as follows. In each cycle, one of the masters (in round-robin order)
has the highest priority (i.e., owns the token) for access to a shared
resource. If the token-holding master does not need the resource in
this cycle, the master with the next highest priority who sends a
request can be granted the resource, and the highest priority master
then passes the token to the next master in round-robin order.

Section 4.1 shows the design of the Bus Arbiter (BA) generated by
our tool, and Section 4.2 presents a sample design of a 32x32
Switch Arbiter (SA) using our tool. A BA generated by our Round-
robin Arbiter Generator (RAG) tool can handle any number of
masters, while MxM SAs generated by RAG have a hierarchical
structure.

4.1 Bus Arbiter Design
Figure 3 show a BA generated to handle four requests. Figure 3(a)
shows the BA block diagram for four bus masters. To generate a
BA, RAG takes as input the number of masters and produces
synthesizable Verilog code at the RTL level. Figure 3(b) shows the
logic diagram for a 4x4 generated by RAG.

Figure 3(a). Bus arbiter block diagram.

The generated BA consists of a D flip-flop, priority logic blocks, an
M-bit ring counter and M M-input OR gates as shown in
Figure 3(b) where M=4. A 4x4 priority logic block is implemented
in combinational logic implementing the logic function of Table 1.
The priority of inputs are placed in descending order from in[0] to
in[3] in the priority logic blocks (Priority Logic 0 through 3) shown
in Figure 3(b). Thus, in[0] has the highest priority, in[1] has the
next priority, and so on. To implement a BA, we employ the token
concept from a token ring in a network. The possession of the token
allows a priority logic block to be enabled. Since each priority logic
block has a different order of inputs (request signals), the priority of
request signals varies with the chosen priority logic block. The token
is implemented in a 4-bit ring counter as shown in Figure 3(b).
The outputs (four bits) of the ring counter act as the enable signals
to the priority logic blocks. Thus, only one enabled priority logic
block can assert a grant signal. The ack signal to the bus arbiter is
delayed by one arbitration cycle by a D flip-flop as shown in
Figure 3(b). The delayed ack signal pulls a trigger to the ring
counter so that the content of the ring counter is rotated one bit.
Thus, the token bit is rotated left each cycle, with 4’b1000 rotating
to 4’b0001 in Figure 3(b), and the token is initialized to one at the
reset phase (e.g., 4’b0001 for four-bit ring counter) so that there is

only one ‘1’ output by the ring counter. In the round-robin
algorithm, each master must wait no longer than (M-1) time slots,
the period of time allocated to the chosen master, until the next time
it receives the token (i.e., highest priority). The assigned time slot
can also be yielded to another master if the owner of the time slot
has nothing to send [12]. This protocol guarantees a dynamic
priority assignment to bus masters (requestors) without starvation.

Priority
Logic 0

req[0]
req[1]
req[2]
req[3]

Ring Counter

to
ke

n
[0

]

to
ke

n
[1

]

to
ke

n
[2

]

to
ke

n
[3

]

Priority
Logic 2

Priority
Logic 3

Priority
Logic 1

EN

EN

EN

EN

grant[0]

grant[1]

grant[2]

grant[3]

4x4 BA

ack

reset

output[0]
output[1]
output[2]
output[3]

in[0]
in[1]
in[2]
in[3]

D-FFclock

Priority
Logic 0

req[0]
req[1]
req[2]
req[3]

Ring Counter

to
ke

n
[0

]

to
ke

n
[1

]

to
ke

n
[2

]

to
ke

n
[3

]

to
ke

n
[0

]

to
ke

n
[1

]

to
ke

n
[2

]

to
ke

n
[3

]

Priority
Logic 2

Priority
Logic 3

Priority
Logic 1

EN

EN

EN

EN

grant[0]

grant[1]

grant[2]

grant[3]

4x4 BA

ack

reset

output[0]
output[1]
output[2]
output[3]

in[0]
in[1]
in[2]
in[3]

D-FFD-FFclock

Figure 3(b). Logic diagram of 4x4 bus arbiter block.

Table 1. Truth table of a 4x4 priority logic block.

100010001

0100X1001

0010XX101

0001XXX11

0000XXXX0

output [3]output [2]output [1]output [0]in [3]in [2]in [1]in [0]EN

100010001

0100X1001

0010XX101

0001XXX11

0000XXXX0

output [3]output [2]output [1]output [0]in [3]in [2]in [1]in [0]EN

Example. Consider a scenario with four processors as bus masters
connected to the same bus with one large shared memory on the bus
as a slave. Suppose the token is 4 (token=4’b0100, which means
processor 2 has the token), and only processor 0 (which uses req[0])
and processor 1 (req[1]) want to access the memory at this cycle.
Token=4’b0100 leads to the enabling of only Priority Logic 2 in
Figure 3(b). In Priority Logic 2, the connection to in[0] (req[2] from
processor 2) indicates the highest priority. Since req[3] is connected
to in[1] of Priority Logic 2 in Figure 3(b), processor 3 has the next
highest priority. However, since neither processor 2 nor processor 3
make a request, in[2] which is connected to req[0] is next in line in
priority. Thus, processor 0 is granted access to the memory, and
then the memory controller of the accessed memory sends an ack
signal, whose connection to the BA is shown in Figure 3(a), indicating
when the memory transaction is successfully completed. Next, which
could be several processor clock cycles later, the token is passed to
processor 3 (the 4-bit ring counter is rotated when the ack signal is
received) in which case the token is 4’b1000.

4.2 Switch Arbiter Design
The SA generated by RAG uses 2x2 and 4x4 switch arbiter blocks
to implement an MxM switch arbiter. RAG is most efficient when
M is a power of two. Figures 4(a) and 4(b) show how bus arbiters
are modified for switch arbiter implementation by adding some
AND and OR gates to a BA. Request signals of the current level are
ORed together to generate just one request to the higher level, and
grant signals are ANDed together with an ack input (active high)
from the higher level so that the only granted switch arbiter block
can grant the corresponding master.

A root SA is placed at the top level in the hierarchy. Since there is
no higher SA in the hierarchy, root SAs have no ack input nor req
output as shown in Figures 4(c) and 4(d). The input/output logic of
a 2x2 root SA and a 4x4 root SA are the same as that of a 2x2 BA
and a 4x4 BA except that there is no ack input and no D flip-flop in
front of the ring counter: thus, the clock input is used to rotate the
content (token bits) of the ring counter.

2x2
Bus

Arbiter

ack

req0[0]
req0[1]

grant0[1]

grant0[2]

req0

2x2 SA
clock

reset
2x2
Bus

Arbiter

ack

req0[0]
req0[1]

grant0[1]

grant0[2]

req0

2x2 SA
clock

reset
4x4
Bus

Arbiter

ack
grant0[0]
grant0[1]

grant0[2]
grant0[3]req0[3]

req0[0]
req0[1]
req0[2]

req0

4x4 SA
clock

reset 4x4
Bus

Arbiter

ack
grant0[0]
grant0[1]

grant0[2]
grant0[3]req0[3]

req0[0]
req0[1]
req0[2]

req0

4x4 SA
clock

reset

 Figure 4(a). 2x2 SA. Figure 4(b). 4x4 SA.

2x2
BA

without
D flip-flop

ack0

ack1

req0

req1

2x2 root SA
clock

ring counterreset
2x2
BA

without
D flip-flop

ack0

ack1

req0

req1

2x2 root SA
clock

ring counterreset
4x4
BA

without
D flip-flop

ack0
ack1
ack2
ack3

req0
req1
req2
req3

4x4 root SA
clock ring counterreset

4x4
BA

without
D flip-flop

ack0
ack1
ack2
ack3

req0
req1
req2
req3

4x4 root SA
clock ring counterreset

 Figure 4(c). 2x2 root SA. Figure 4(d). 4x4 root SA.

These 2x2 and 4x4 switch arbiter blocks can be composed into a
tree structure as shown in Figure 5 (the leftmost blocks are the
leaves and the rightmost block is the root). Non-root 2x2 and 4x4
switch arbiter blocks receive an acknowledgement from a switch
arbiter block at the next higher level (which translates to being
further towards the right hand side of Figure 5) for the next
arbitration cycle. Since the root SA in the hierarchy does not receive
an acknowledgement (because there is no higher level switch arbiter
block), the root arbiter takes the clock input so that a token is
passed to the next master in every arbitration cycle in round-robin
order.

To reduce the number of levels in the hierarchical Switch Arbiter
(SA), we use as many 4x4 switch arbiter blocks as possible because
the area of a 4x4 switch arbiter block is less than the area of
employing two levels of 2x2 switch arbiter blocks to handle four
requests, for a total of three 2x2 switch arbiter blocks: two leaves
and one root. Moreover, the delay of a 4x4 switch arbiter block is
0.34ns in a TSMC .25µm library from LEDA Systems [10, 14]
which is less than the delay of implementing a hierarchical 4x4 SA
using two levels of 2x2 switch arbiters: 0.46ns using the same
library. This comparison is discussed in detail in [13].

Figure 5 shows the configuration of 32x32 SA for a 32 x32 fast
switch. This hierarchical switch arbiter is a distributed switch arbiter
whose individual 2x2 and 4x4 SAs operate in parallel with one
another. In other words, the upper level switch arbiters (relatively
located at the right side of Figure 5) arbitrate the ORed requests
from the lower level switch arbiters in Figure 5, while a internal BA
of a lower level SA grants one request regardless of an ack signal
from the higher level. A lower level SA ANDs the outputs of its
internal BA grant signals with its ack input. The end result is to
guarantee that at most one grant out of 32 grants is logic ‘1’. Note
that ack signals from higher levels are also input to a D-flip-flop in
the BA internal to each SA in order to potentially rotate the token bit
in the next arbitration cycle. More detail about Figure 5, including
the critical path, is contained in [13].

This scheme of Figure 5 results in area savings and delay savings
compared with a centralized arbiter. Even more, the design of a class

of hierarchical SAs similar to Figure 5 is automated by the RAG
tool.

4x4
switch
arbiter
l0.sa0

req0[0]
req0[1]
req0[2]
req0[3]

ack0[0]

4x4
switch
Arbiter
l0.sa1

ack0[1]

4x4
switch
arbiter
l0.sa2

ack0[3]

4x4
switch
arbiter
l0.sa3

4x4
switch
arbiter
l1.sa0

req1[0]
req1[1]
req1[2]
req1[3]

req2[0]
req2[1]
req2[2]
req2[3]

req3[0]
req3[1]
req3[2]
req3[3]

ack0[2]

4x4
switch
arbiter
l0.sa4

req4[0]
req4[1]
req4[2]
req4[3]

ack1[0]

4x4
switch
arbiter
l0.sa5

ack1[1]

4x4
switch
arbiter
l0.sa6

ack1[3]

4x4
switch
arbiter
l0.sa7

4x4
switch
arbiter
l1.sa1

req5[0]
req5[1]
req5[2]
req5[3]

req6[0]
req6[1]
req6[2]
req6[3]

req7[0]
req7[1]
req7[2]
req7[3]

ack1[2]

2x2
root

SA

grant0[0]
grant0[1]
grant0[2]
grant0[3]

grant1[0]
grant1[1]
grant1[2]
grant1[3]

grant2[0]
grant2[1]
grant2[2]
grant2[3]

grant3[0]
grant3[1]
grant3[2]
grant3[3]

grant4[0]
grant4[1]
grant4[2]
grant4[3]

grant5[0]
grant5[1]
grant5[2]
grant5[3]

grant6[0]
grant6[1]
grant6[2]
grant6[3]

grant7[0]
grant7[1]
grant7[2]
grant7[3]

up_req[0]
up_req[1]

req0

req1

req2 req3

req4req5

req6
req7

up_ack0

up_ack1

clock

4x4
switch
arbiter
l0.sa0

req0[0]
req0[1]
req0[2]
req0[3]

req0[0]
req0[1]
req0[2]
req0[3]

ack0[0]

4x4
switch
Arbiter
l0.sa1

ack0[1]

4x4
switch
arbiter
l0.sa2

ack0[3]

4x4
switch
arbiter
l0.sa3

4x4
switch
arbiter
l1.sa0

req1[0]
req1[1]
req1[2]
req1[3]

req1[0]
req1[1]
req1[2]
req1[3]

req2[0]
req2[1]
req2[2]
req2[3]

req2[0]
req2[1]
req2[2]
req2[3]

req3[0]
req3[1]
req3[2]
req3[3]

req3[0]
req3[1]
req3[2]
req3[3]

ack0[2]

4x4
switch
arbiter
l0.sa4

req4[0]
req4[1]
req4[2]
req4[3]

req4[0]
req4[1]
req4[2]
req4[3]

ack1[0]

4x4
switch
arbiter
l0.sa5

ack1[1]

4x4
switch
arbiter
l0.sa6

ack1[3]

4x4
switch
arbiter
l0.sa7

4x4
switch
arbiter
l1.sa1

req5[0]
req5[1]
req5[2]
req5[3]

req5[0]
req5[1]
req5[2]
req5[3]

req6[0]
req6[1]
req6[2]
req6[3]

req6[0]
req6[1]
req6[2]
req6[3]

req7[0]
req7[1]
req7[2]
req7[3]

req7[0]
req7[1]
req7[2]
req7[3]

ack1[2]

2x2
root

SA

grant0[0]
grant0[1]
grant0[2]
grant0[3]

grant0[0]
grant0[1]
grant0[2]
grant0[3]

grant1[0]
grant1[1]
grant1[2]
grant1[3]

grant1[0]
grant1[1]
grant1[2]
grant1[3]

grant2[0]
grant2[1]
grant2[2]
grant2[3]

grant2[0]
grant2[1]
grant2[2]
grant2[3]

grant3[0]
grant3[1]
grant3[2]
grant3[3]

grant3[0]
grant3[1]
grant3[2]
grant3[3]

grant4[0]
grant4[1]
grant4[2]
grant4[3]

grant4[0]
grant4[1]
grant4[2]
grant4[3]

grant5[0]
grant5[1]
grant5[2]
grant5[3]

grant5[0]
grant5[1]
grant5[2]
grant5[3]

grant6[0]
grant6[1]
grant6[2]
grant6[3]

grant6[0]
grant6[1]
grant6[2]
grant6[3]

grant7[0]
grant7[1]
grant7[2]
grant7[3]

grant7[0]
grant7[1]
grant7[2]
grant7[3]

up_req[0]
up_req[1]

req0

req1

req2 req3

req4req5

req6
req7

up_ack0

up_ack1

clock

Figure 5. Hierarchical switch arbiter for 32 x 32 switch

(Note: reset signal not shown).

5. IMPLEMENTATION OF THE RAG TOOL
Our Round-robin Arbiter Generator (RAG) tool can generate
synthesizable Verilog for a BA able to handle any number of
requests. RAG can also combine switch arbiter blocks (2x2 and 4x4
switch arbiters) to produce synthesizable Verilog for a hierarchical
fast MxM switch arbiter.

5.1 RAG Tool
Figure 6 shows the flow of RAG. First, the user chooses the arbiter
type (bus or switch) and the number of masters for the chosen
arbiter type. The algorithm for a bus arbiter is straightforward
because the tool just generates bus arbiter logic for the exact number
of masters. The truth table shown in Table 1 shows the regular
pattern as the number of masters, M increases and is implemented
with simple logic equation in Verilog for the generation of a BA.
From Figures 7 and 8, it turns out that employing a Switch Arbiter
(SA) to implement the BA logic is better in terms of area and speed
when M is greater than 4 at the possible waste of ports for the case
that M is not a power of 2 [13]. In short, a parametrizable Verilog
version of Table 1 suffices to generate a BA with any specific
number of masters.

For an MxM Switch Arbiter (SA), the tool divides M by 4 to decide
the maximum allowable number of 4x4 switch arbiters that can be
used in an MxM SA. First, 4x4 switch arbiters are employed as
many as the quotient of M divided by 4. If M modulo 4 is not equal
to 0, a 2x2 switch arbiter is employed when the remainder is less
than 3. Otherwise another 4x4 switch arbiter is employed with one

unused request (one request signal, say req[0] in Figure 4(a), is set
to ‘0’). To get the optimum performance, M is preferred to be a
power of two.
After the tool decides the number of 2x2 and 4x4 switch arbiter
blocks for each level in the tree structure, the tool will integrate
switch arbiters for each level and produce an MxM SA. More
algorithm detail, including pseudo code, is available in a technical
report [13].

User input:
1. Type of the arbiter
2. Number of masters

generate M x M
bus arbiter
gen_arb();

Bus Arbiter

calculate the number of
levels and the number of
basic arbiter blocks for
each level
interpret();

Switch Arbiter

integrate M x M
hierarchical switch arbiter
integ_arb();

Library
2x2 SA
4x4 SA
2x2 root SA
4x4 root SA

Bus Arbiter Switch Arbiter

User input:
1. Type of the arbiter
2. Number of masters

generate M x M
bus arbiter
gen_arb();

Bus Arbiter

calculate the number of
levels and the number of
basic arbiter blocks for
each level
interpret();

Switch Arbiter

integrate M x M
hierarchical switch arbiter
integ_arb();

Library
2x2 SA
4x4 SA
2x2 root SA
4x4 root SA

Library
2x2 SA
4x4 SA
2x2 root SA
4x4 root SA

Bus Arbiter Switch Arbiter
Figure 6. Flow of RAG tool.

5.2 Area and delay considerations
Figures 7(a) and 7(b) show the area and delay, respectively, of BAs
generated by RAG. The area increases more than linearly as the
number of masters (M) increases. As can be seen in Figure 7(b),
delay increases linearly as M increases. Our tool can generate a bus
arbiter that can handle the exact number of masters (including non-
powers of two). From Figures 7 and 8, for minimal area and delay it
is better to employ SA when the number of bus masters is greater
than 4 and is a power of two. However, when the number of masters
is not a power of two, a user might prefer to choose a bus arbiter
option in our tool because of possible waste of ports in the SA.
Figure 7 and Figure 8 help a user to choose between BA and SA
options with consideration of area and delay.
As shown in Figure 7(b), the increasing delay for our generated BA
as M increases will limit the achievable switching speed in a fast
switch. We found that limiting the size of the switch arbiter blocks,
used as the components of a SA, to 2x2 and 4x4 yielded the fastest
switching speeds. Our RAG tool is favored to utilize 4x4 switch
arbiter blocks rather than 2x2 switch arbiter blocks. Employing 4x4
switch arbiter blocks gives 16% area saving and 36% gate delay
reduction compared with using three 2x2 switch arbiter blocks (two
for leaves and one for a root to implement 4x4 switch arbiter block).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35

Number of Masters

B
A

 a
re

a
in

 th
e

n
u
m

b
er

 o
f

IN
V

E
T
E

R
 g

at
es

 e
q
u
iv

al
en

ts
 w

ith

T
S

M
C

 .2
5u

m

Figure 7(a). Area of MxM bus arbiter

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

Number of Masters

B
A

 d
el

ay
 in

 n
s

w
ith

 T
S

M
C

 .2
5u

m

Figure 7(b). Delay of MxM bus arbiter

6. EXPERIMENTAL RESULTS
In this section, we first compare area and delay between a Ping-
Pong Arbiter (PPA) [5], a Programmable Priority Encoder
(PPE) [8] for iSLIP [3], and our generated Switch Arbiter (SA).
Then will show a speedup for our generated SA over a PPA and a
PPE. First, we explain areas and delays of the three switch arbiters,
then the speedups achieved by the SA generated by RAG.

6.1 Areas and Delays
PPA uses a 2x2 switch arbiter as a basic switch arbiter block. PPA
applies 2x2 switch arbiters to a binary tree structure to form an
MxM switch arbiter. Whenever one master is granted by a 2x2
switch arbiter, the other master is guaranteed to be granted for the
next cycle. The treatment of upper level grant signals in the binary
tree is similar to SA in Figure 4(a). One difference is that every 2x2
switch arbiter of PPA receives acknowledgements from two higher
levels and ANDs them together with the current level grants.
A PPE for iSLIP is a centralized switch arbiter. PPE adds a
programmable functionality to the priority encoder so that the grant
pointer can point to the next request after the current arbitration [8].
The delay and area of priority encoder in PPE becomes larger as M
increases and is shown in Figure 8 (a) and Figure 8(b).
In [5], the authors compare PPA with iSLIP [3] and DRRM [4].
Note that DRRM is not implemented in hardware. The performance
of PPA is very competitive with speedup c=2. The speedup c of the
switch fabric is the ratio of the switch fabric bandwidth and input
link bandwidth. Since the arbitration protocol of SA is almost the
same as that of PPA, we assume that the performance of a packet
switch using SA and a packet switch using PPA are comparable
with each other, with the major difference only in logic (arbitration)
delay which was found to be the critical path. Thus, we just compare
the area and the longest delay of SA with those of PPA and PPE for
iSLIP in different MxM configurations.

0

1000

2000

3000

4000

5000

6000

0 50 100 150

MxM arbiter

A
re
a
o
f a

rb
it
er

 in
 th

e
n
u
m

be
r o

f in
v
e
rte

r

eq
u
iv
al
en

ts SA

PPE

PPA

Figure 8(a). The area of MxM switch arbiter.

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150

MxM arbiter

D
el
ay

 in
 a
rb

ite
r w

it
h
TS

M
C
 .2

5u
m

SA

PPE

PPA

Figure 8(b). The longest delay of MxM switch arbiter

Figures 8 (a) and 8(b) show the area and the longest switch arbiter
logic delays of SA, PPE1 and PPA2, respectively. The areas of all
switch arbiters increase linearly as M increases. SA shows the
shortest logic delay when compared with PPE and PPA, and the
logic delay increases the slowest (compared with PPE and PPA) as
M increases from 32 to 128. This is because we first limit the size of
basic switch arbiters to 2x2 and 4x4 to reduce the critical path delay
due to the expansion of priority logic blocks as M increases and
apply the 2x2 and 4x4 switch arbiters to a distributed structure so
that the number and delay of the switch arbiter block(s) in the
critical path is minimized. Since PPE is a centralized switch arbiter,
its delay is longest. Even though PPA is also a distributed switch
arbiter, it has more levels than SA causing more gate delays to
connect switch arbiters in different levels.

6.2 Speedup for a Terabit switch
For comparison purposes with PPA and PPE, suppose we have a
128x128 switch with eight-byte cell size, and the speed of the serial
link is wholly determined by the arbitration cycles. Thus, the serial
link capacity is equal to 64-bit/128x128 switch arbiter delay. Then
the aggregated bps capacities of SA, PPA, and PPE are 6.16Tbps,
3.18Tbps, and 2.59Tbps, respectively. This can be verified by using
the delays for SA, PPA, and PPE shown in Figure 8(b). Thus, for
this comparison, the RAG generated arbiter achieves throughput
1.9X higher than PPA and 2.4X higher than PPE.

Currently some commercial terabit switches are available. One is
from Mindspeed, M21155 [9, 16]. M21155 is a 144-port x144-port
switch, each port delivering a data rate of up to 3.125Gbps; the
aggregate capacity is 0.45Tbps. The other is PetaSwitch [11] from
PetaSwitch Solutions, Inc. PetaSwitch claims that their chipset
allows configuration of a switch for data rates from Gigabit
Ethernet/OC-48 to OC-3072 and port numbers from 2x2 to
256x256. The aggregate bandwidth, PetaSwitch claims, can be
configured from 40 Gbps to 10.24Tbps depending on the number of
ports and the data rate of port. Unfortunately, no information about
the switch arbitration logic nor the process technology (e.g., .25µm)
used is publicly available for either of these chips.

1 The area of PPE is synthesized and complied with Texas Instruments

TSC5000 0.25µm technology [8], while SA and PPA with TSMC
0.25µm technology. We modeled the PPE as shown in Figure 11 of [8]
to measure the delay with TSMC 0.25 technology. The delay measured
here is well matched with Table 2 in [8] except M=32. More details
about the comparisons are contained in [13]

2 We modeled PPA by writing Verilog code based on the logic diagram
in [5] and synthesized using the Design Compiler [7] to estimate the
area and delay.

7. CONCLUSION
In this paper, we introduced a Round–robin Arbiter Generator
(RAG) tool. RAG can generate a BA to handle the exact number of
bus masters for both on-chip and off-chip buses. RAG can also
generate a parallel hierarchical MxM switch arbiter. We discussed
the BA logic and showed the logic of 2x2 and 4x4 SA components.
We also presented how RAG uses 2x2 and 4x4 switch arbiter blocks
to produce a hierarchical MxM switch arbiter. The first contribution
of this paper is the automated generation of a round-robin token
passing Bus Arbiter (BA) to reduce bus design time. The generated
BA is fair, fast, and has a low and predictable worst-case wait time.
The second contribution of this paper is the automated generation of
an MxM SA. We compared the area and delay of our generated SAs
with PPA and PPE. It turns out that our distributed switch arbiters
generated by RAG lead to significant area and delay improvements
when compared with other switch arbiters such as PPA and PPE.
Specifically, RAG can be used to generate a switch arbiter for a
128x128 terabit switch which, assuming as stated in [5] that the
critical path is the switch arbitration logic, achieves throughput 1.9X
higher than PPA and 2.4X higher than PPE for the same 128x128
configuration.

8. ACKNOWLEDGMENTS
This research is funded by NSF under INT-9973120, CCR-9984808
and CCR-0082164. We acknowledge donations received from
Denali, Hewlett-Packard, Intel, LEDA, Mentor Graphics, Sun, and
Synopsys.

9. REFERENCES
[1] W. J. Dally and B. Towels, “Route, Packets, Not Wires: On-Chip

Interconnection Networks,” Proceedings of IEEE Design Automation
Conference, 2001, pp. 684-689.

[2] F. A. Tobagi, “Fast Packet Switch Architecture for Broadband
Integrated Services Digital Networks,” Proceedings of IEEE, January
1990, pp. 133-167.

[3] N. Mckeown, P. Varaiya, and J. Warland, “The iSLIP Scheduling
Algorithm for Input-Queued Switch,” IEEE Transaction on Networks,
1999, pp. 188-201.

[4] H. J. Chao and J. S. Park, “Centralized Contention Resolution Schemes
for a Larger-capacity Optical ATM Switch,” Proceedings of IEEE
ATM Workshop, 1998, pp. 11-16.

[5] H. J. Chao, C. H. Lam, and X. Guo, “A Fast Arbitration Scheme for
Terabit Packet Switches,” Proceedings of IEEE Global
Telecommunications Conference, 1999, pp. 1236-1243.

[6] Y. Tamir and H-C. Chi, “High Performance Multi-queue Buffers for
VLSI Communications Switches,” IEEE Transaction on
Communications, 1987, pp. 1347-1356.

[7] Synopsys, Design Compiler, Available HTTP: http://www.synopsys.
com/products/logic/design_comp_cs.html.

[8] P. Gupta and N. Mckeown, “Designing and Implementing a Fast
Crossbar Scheduler,” IEEE Micro, 1999, pp. 20-28.

[9] P. Rigby, “Mindspeed unveils terabit switch chip,” Network World
Fusion Newsletter, 12/12/01, Available HTTP: http:// www.
nwfusion.com/newsletters/optical/2001/01142734.html.

[10] TSMC, “IP Services,” Available HTTP: http://www.tsmc.com/
design/ip.html.

[11] PetaSwitch Product, Available HTTP: http://www.peta-switch.com.
[12] A. Silberschatz, P. Galvin, G. Gagne, Applied Operation System

Concepts, NY: John Willey and Sons, Inc., 2000.
[13] E. S. Shin, V. J. Mooney III, G. F. Riley, “Round-robin Arbiter Design

and Generation,” Georgia Institute of Technology, Atlanta, GA,
Technical Report GIT-CC-02-38, 2002, Available HTTP:
http://www.cc.gatech.edu/tech_reports.

[14] LEDA Systems, Available HTTP: http://www.ledasys.com.
[15] W. Stallings, Data and Computer Communications, Fifth Edition, NJ:

Prentice Hall, 1997.
[16] Mindspeed, Available HTTP: http://mindspeed.com.

