A Novel O(n) Parallel Banker's Algorithm for System-on-a-Chip

Jaehwan John Lee and Vincent John Mooney III

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, U.S.A.

http://codesign.ece.gatech.edu/

n 0

Future SoC designs

Advantages

- Multiple heterogeneous processors (tens of processes)
- Multiple on-chip hardware resources o DSP, FFT, MPEG, GPS, Shared Memory, etc.
- Examples o Xilinx Virtex-II Pro FPGA includes multiple PowerPC cores
- o Broadcom BCM1400 includes multiple MIPS64 cores
- Processes in such an SoC
 - Dynamically request and use resources May end up in deadlock
- Current embedded systems or single processor systems
 - Today, typically ignore deadlock possibilities

Multiprocessor system-on-a-chip (MPSoC) A multiprocessor RTOS An application on top of the system

custom logic	reo	configur logic	able PBA	IJ	L,1	MPC755
Multiple D	SPs		Н	w	L1	MPC755
Semaphores		16MB L2		L ¹	MPC755	
I/O buffers					мрс755	
Memory allocator					I.I.	
Arbite	ſ	mer	1102		L1	MPC755

- Problem
 - How to deal with deadlock as the number of processors and resources approaches 50-100?
- Goal
 - Allow software to make requests in any order
 - Grant as many resources as possible while maintaining safety properties
 - Avoid deadlock correctly and quickly
- Solution
 - A hardware/software mechanism of deadlock avoidance, easily applicable to Real-Time Multiprocessor System-on-a-Chip (SoC) design

Method 0 0 g

Deadlock IP Generator

Synopsys Design Compiler

- TSMC .25µm technology library from Qualcore Logic
- 0.05% of the total SoC area with five PEs and memory
- All PBAUs able to handle up to 16 instances for each resource

eiement	element	element	process
	uei	UPO	
-	-	-	
		++1 + +	+TI
element	element	element	process
Call	Call	cell	
	1 · · · ·		
	· · · ·		
element	element	element	process
Cell	cell .	cell	T Cell
			-
resource	resource	resource	safety
Cell	cell	cell	call
· · · -			
		-	

Module Name	Total Area in terms of two-input NAND gates	Lines of Verilog HDL Code
PBAU 5x5	1303	600
8x8	3243	700
10x10	5030	770
15x15	11158	1000
20x20	19753	1350
MPSoC	42 Million	-

Clock period used: 4 ns TSMC: Taiwan Semiconductor Manufacturing Company **PE: Processing Element**

Results Experimental

- Five processors
- Four resources
 - Q1: Multiple DSPs
 - Q2: Hardware semaphores
 - Q3: I/O buffers
 - Q4: A memory allocator
- PBAU 5x5
- A robotic application
 - Five processes
 - Requires multiple instances
 - 22 service requests to PBAU • Requests, releases and claim settings

•	Performance	improvement
---	-------------	-------------

- 99% algorithm execution time reduction
- 19% reduction in an application execution time

Method of Deadlock Avoidance	Algorithm Exe. Time (cycles)	Normaliz ed Exe. Time	Application Exe. Time (cycles)
PBAU Hardware	3.32 (average)	1X	185716
BA in Software	5398 (average)	1625X	221259

• Execution time comparison (PBAU vs. BA in software)

Method of Implementation	Set Available	Set Max. Claim	Request Command	Release Command	Wrong Command
# of Command	1	5	9	6	1
PBAU hardware	1	1	6.5	1	2
BA in Software	416	427	11337	2270	560

The time unit is a clock cycle, and values are averaged

Integration into the δ hardware/software RTOS partitioning framework

δ framework

- Hardware/software RTOS/MPSoC configuration framework
 - Enables automatic generation of different mixes of the HW/SW RTOS
 - Can be generalized to instantiate additional HW or SW **RTOS** components
 - Integrates parameterized IP generators such as DDU, **DAU** and **PBAU** generators
- Designed by V. Mooney, J. Lee and K. Ryu
- RTOS Components: designed by B. Akgul, P. Kuarchroen, J. Lee, K. Ryu, M. Shalan and E. Shin

Conclusion

- Parallel Banker's Algorithm Unit (PBAU)
 - Faster deadlock avoidance for multiple instance multiple resource systems (1600X)

o O(n) run-time complexity with O(1) in the best case

- Small area (less than 0.1% in our example SoC)
- Integration into the δ framework
 - With custom deadlock IP generator for a specific target

Details

J. Lee, "Hardware/Software Deadlock Avoidance for Multiprocessor Multiresource System-on-a-Chip," Ph.D. thesis, Georgia Tech, Fall 2004. http://etd.gatech.edu/theses/available/etd-11222004-083429/