
1

©Georgia Institute of Technology, 2004

A Novel Deadlock Avoidance
Algorithm and Its Hardware

Implementation

++Jaehwan Lee and *Jaehwan Lee and *Vincent J. Mooney IIIVincent J. Mooney III

Hardware/Software RTOS Group
Center for Research on Embedded Systems and Technology (CREST)

*Associate Professor at ECE and Adjunct Associate Professor at CoC
+Georgia Institute of Technology

Atlanta, GA USA

©Georgia Institute of Technology, 2004

Outline

MotivationMotivation
TermsTerms
Previous WorkPrevious Work
MethodologyMethodology
ImplementationImplementation
Experimental ResultsExperimental Results
ConclusionConclusion

2

3
©Georgia Institute of Technology, 2004

Motivation
- Technology Trends
Future Future SoCSoC’’ss

Multiple heterogeneous processors (tens of processes)Multiple heterogeneous processors (tens of processes)
Multiple onMultiple on--chip hardware resourceschip hardware resources

DSP, FFT, MPEG, GPS, Shared Memory, etcDSP, FFT, MPEG, GPS, Shared Memory, etc
Current exampleCurrent example

XilinxXilinx VirtexVirtex--II Pro II Pro FPGAsFPGAs include multiple PowerPC processors include multiple PowerPC processors
Processes in such an SoCProcesses in such an SoC

Dynamically request and use resourcesDynamically request and use resources
May end up in deadlockMay end up in deadlock

Current embedded system or single processor systemCurrent embedded system or single processor system
Typically ignored todayTypically ignored today

HW
SW

RTOS SoC: System on ChipSoC: System on Chip

4
©Georgia Institute of Technology, 2004

Motivation
- Does deadlock really matter?

Examples of future realExamples of future real--time systemstime systems
HumanHuman--like robot with multiple processeslike robot with multiple processes

DeadlockDeadlock
•• DamageDamage
•• People get injuredPeople get injured
•• LawLaw--suitssuits

Mars RoverMars Rover
DeadlockDeadlock

•• Loss of millions of dollarsLoss of millions of dollars
•• Time lossTime loss

Industrial controlIndustrial control
CarsCars

Even if low probability of deadlock, prefer no Even if low probability of deadlock, prefer no
deadlock whatsoeverdeadlock whatsoever

3

5
©Georgia Institute of Technology, 2004

Objective
- Problem, Goal and Solution
ProblemProblem

How to deal with deadlock?How to deal with deadlock?
GoalGoal

Allow software to make requests in any orderAllow software to make requests in any order
Grant as many resources as possibleGrant as many resources as possible
Avoid deadlock quicklyAvoid deadlock quickly
within a short, deterministic timewithin a short, deterministic time

SolutionSolution
A hardware/software mechanism of deadlock avoidance, A hardware/software mechanism of deadlock avoidance,
easily applicable to Realeasily applicable to Real--Time MultiTime Multi--processor Systemprocessor System--
onon--aa--Chip (SoC) designChip (SoC) design

6
©Georgia Institute of Technology, 2004

Background: Definitions

Definition of Definition of DeadlockDeadlock
A system has a deadlock A system has a deadlock iffiff the the
system has a set of processes, each system has a set of processes, each
of which is blocked, waiting for of which is blocked, waiting for
requirements that can never be requirements that can never be
satisfied.satisfied.

Q2

P1

P2

Q1

4

7
©Georgia Institute of Technology, 2004

Background: Definitions

Definition of Definition of LivelockLivelock
Livelock is a situation where a request Livelock is a situation where a request
for a resource is repeatedly denied and for a resource is repeatedly denied and
possibly never accepted because of the possibly never accepted because of the
unavailability of the resource, resulting unavailability of the resource, resulting
in a stalled process, while the resource in a stalled process, while the resource
is made available for other is made available for other process(esprocess(es))
which make progress.which make progress.

8
©Georgia Institute of Technology, 2004

Background: Definitions

Definition of Deadlock AvoidanceDefinition of Deadlock Avoidance
A way of dealing with deadlock A way of dealing with deadlock
where resource usage is dynamically where resource usage is dynamically
controlled not to reach deadlock controlled not to reach deadlock
(i.e., on the fly, resource usage is (i.e., on the fly, resource usage is
controlled to ensure that there can controlled to ensure that there can
never be deadlock).never be deadlock).

5

9
©Georgia Institute of Technology, 2004

Background: Terms
Request deadlock (R-dl)
A deadlock situation directly caused by a requestA deadlock situation directly caused by a request
Assumptions: Assumptions: No restriction on resource usageNo restriction on resource usage

(i) P1 requires either Q1, Q2, or both depending on software flo(i) P1 requires either Q1, Q2, or both depending on software floww
(ii) P2 also requires either Q1, Q2, or both(ii) P2 also requires either Q1, Q2, or both
(iii) We don(iii) We don’’t know in advancet know in advance

When P1 and P2 take flows that they require both Q1 and Q2When P1 and P2 take flows that they require both Q1 and Q2

Q2

P1

P2

Q1
t1

Grant edge
Request edge

t2

t3 t4

t1

t2

P1, P2: processes
Q1, Q2: resources

10
©Georgia Institute of Technology, 2004

Background: Terms
Grant deadlock (G-dl)

A deadlock situation directly caused by a grantA deadlock situation directly caused by a grant
The same assumptions with the previousThe same assumptions with the previous

Q1

P1 P2

Q2

Grant edge

Request edge

Q3

P3

Q1

P1 P2

Q2 Q3

P3

Assumption (iv):

Priorities P1 > P2 > P3

t1 t3 t4
t5t1 t2t2

6

11
©Georgia Institute of Technology, 2004

Differentiation between
R-dl and G-dl

ReasonReason
Some actions can only be taken for either RSome actions can only be taken for either R--dl or Gdl or G--dl.dl.
(E.g., G(E.g., G--dl could have been avoided by granting Q2 to dl could have been avoided by granting Q2 to
P3 instead of P2 in the previous GP3 instead of P2 in the previous G--dl example.)dl example.)

Q1

P1 P2

Q2 Q3

P3

Q2

P1

P2

Q1

12
©Georgia Institute of Technology, 2004

How to find deadlock
- Deadlock and Cycle Relation

Q1

P1 P2

Q2 Q3

P3

Deadlock Deadlock ⇒ ∃ Cycle(s) in a RAG
Cycle(s) ⇒ ∃ Deadlock

Q2

P1

P2

Q1

RAG : Resource Allocation Graph

7

13
©Georgia Institute of Technology, 2004

Prior Work in
Deadlock Avoidance
DijkstraDijkstra [22]: Banker[22]: Banker’’s Algorithm (1968)s Algorithm (1968)
HabermannHabermann [29]: O(nm[29]: O(nm22) (1969)) (1969)

Maximum claims strategyMaximum claims strategy
Livelock problemLivelock problem

Holt [20]: Holt [20]: O(mnO(mn) (1972)) (1972)
Solved livelock problem using waitSolved livelock problem using wait--time countertime counter
For general resource systemsFor general resource systems

BelikBelik [27] (1990)[27] (1990)
Path matrix representationPath matrix representation

Resource allocation Resource allocation
CChanging an acyclic digraph while keeping it acyclichanging an acyclic digraph while keeping it acyclic

O(mO(m*n) if no cycle*n) if no cycle

No prior work in hardware implementation of a deadlock No prior work in hardware implementation of a deadlock
avoidance approachavoidance approach

14
©Georgia Institute of Technology, 2004

Prior Work in
Deadlock Avoidance
Traditional MethodsTraditional Methods

Require some knowledge of future requestsRequire some knowledge of future requests
Declare a maximum claim (each process)Declare a maximum claim (each process)
Give a grant only if it will not lead to deadlockGive a grant only if it will not lead to deadlock

AdvantagesAdvantages
No deadlockNo deadlock
No preemptionNo preemption

DisadvantagesDisadvantages
Low resource utilizationLow resource utilization

Worse for single unit resourcesWorse for single unit resources
Performance degradationPerformance degradation

Due to dynamic avoidance decisionDue to dynamic avoidance decision
Practical issues Practical issues –– long software runlong software run--timetime

8

©Georgia Institute of Technology, 2004

Outline

MotivationMotivation
TermsTerms
Previous WorkPrevious Work
MethodologyMethodology
ImplementationImplementation
Experimental ResultsExperimental Results
ConclusionConclusion

16
©Georgia Institute of Technology, 2004

No declaration of maximum claimsNo declaration of maximum claims
No restriction on resource usageNo restriction on resource usage
AdvantagesAdvantages

Higher resource utilizationHigher resource utilization
Fast due to hardware implementationFast due to hardware implementation

DisadvantagesDisadvantages
Somewhat unfairness on a special occasion Somewhat unfairness on a special occasion

When avoiding GWhen avoiding G--dl dl
(a lower priority process could proceed before a higher (a lower priority process could proceed before a higher
priority process, which would end up in deadlock)priority process, which would end up in deadlock)
But, resulting in higher resource utilizationBut, resulting in higher resource utilization

Possibility of resource preemption Possibility of resource preemption
When avoiding RWhen avoiding R--dldl

Overview of our methodology

9

17
©Georgia Institute of Technology, 2004

Deadlock Avoidance Algorithm (DAA) 1
- Basic approach

AAn event of a requestn event of a request

Is the resource available?Is the resource available?

Grant it toGrant it to
tthe requesterhe requester Deny the requestDeny the request

WWould cause Rould cause R--dl?dl?

Make the Make the
rrequest pendingequest pending

returnreturn

YY

NN

NN

YY

* No deadlock here* No deadlock here

**

18
©Georgia Institute of Technology, 2004

DAA 1 (cont'd)
AAn event of a releasen event of a release

AAny process is waiting?ny process is waiting?

Make the resource availableMake the resource available

WWould cause Gould cause G--dl?dl?

Grant it to theGrant it to the
process waitingprocess waiting

returnreturn

YY

NN
NN

YY
Do not grant it to Do not grant it to
the process waitingthe process waiting

10

19
©Georgia Institute of Technology, 2004

Problem of
Deadlock Avoidance Algorithm (DAA) 1

AAn event of a requestn event of a request

Is the resource available?Is the resource available?

Grant it toGrant it to
tthe requesterhe requester Deny the requestDeny the request

WWould cause Rould cause R--dl?dl?

Make the Make the
rrequest pendingequest pending

returnreturn

YY

NN

NN

YY

Livelock

20
©Georgia Institute of Technology, 2004

Problem of DAA 1 (cont'd)
AAn event of a releasen event of a release

AAny process is waiting?ny process is waiting?

Make the resource availableMake the resource available

WWould cause Gould cause G--dl?dl?

Grant it to theGrant it to the
process waitingprocess waiting

returnreturn

YY

NN
NN

YY
Do not grant Do not grant it to it to
the process waitingthe process waiting

Under
Utilization

11

21
©Georgia Institute of Technology, 2004

Deadlock Avoidance Algorithm (DAA) 2
- Improved Approach

AAn event of a requestn event of a request

Is the resource available?Is the resource available?

Grant it toGrant it to
tthe requesterhe requester

WWould cause Rould cause R--dl?dl?

Make the Make the
rrequest equest
pendingpending

returnreturn

YY

NN

NN

YY

Priority of requester >Priority of requester >
Priority of ownerPriority of owner

Make the Make the rrequest pendingequest pending
Ask the current owner Ask the current owner
to release the resourceto release the resource

Ask the requester to Ask the requester to
give up give up resource(sresource(s))

YY

NN

Resolve
livelock

as well as
deadlock

22
©Georgia Institute of Technology, 2004

DAA 2 (cont'd)
AAn event of a releasen event of a release

AAny process is waiting?ny process is waiting?

Make the resource Make the resource
availableavailable

WWould cause Gould cause G--dl?dl?

Grant it to theGrant it to the
highest priorityhighest priority
process waitingprocess waiting

returnreturn

YY

NN
NN

YY

Grant it to a lowerGrant it to a lower
priority process priority process

waitingwaiting

Improve
resource
utilization

12

©Georgia Institute of Technology, 2004

Outline

MotivationMotivation
TermsTerms
Previous WorkPrevious Work
MethodologyMethodology
ImplementationImplementation
Experimental ResultsExperimental Results
ConclusionConclusion

24
©Georgia Institute of Technology, 2004

Architecture of the DAU

DDU
(matrix)

Start

Reset

Done

Deadlock

DAA
Logic

w/ FSM

Address
decoder

Command
registers

Status
registers

Cell access

Address
control

Data

DDU: Deadlock Detection Unit DDU: Deadlock Detection Unit
FSM: finite state machineFSM: finite state machine

13

25
©Georgia Institute of Technology, 2004

Matrix based parallel processing approachMatrix based parallel processing approach
Removable edge reduction technique to reveal cycles Removable edge reduction technique to reveal cycles
(i.e., deadlock)(i.e., deadlock)

Removable edge*: not related to deadlockRemovable edge*: not related to deadlock

Simple bitSimple bit--wise Boolean operationswise Boolean operations
Implementation easierImplementation easier
Operation faster, Operation faster, O(min(m,nO(min(m,n))))
2~3 orders of magnitude faster than software2~3 orders of magnitude faster than software

Novelty from previous algorithms Novelty from previous algorithms
Does NOT trace exact cyclesDoes NOT trace exact cycles
Does NOT require linked listsDoes NOT require linked lists

Prior Work by Shiu, Tan and Mooney
Deadlock Detection Hardware Unit (DDU)

P. Shiu, Y. Tan and V. Mooney, "A Novel Parallel Deadlock Detection
Algorithm and Architecture," 9th International Workshop on
Hardware/Software Codesign (CODES'01), pp. 30-36, April 2001.

Q1

P1 P2

Q2 Q3

P3

**

26
©Georgia Institute of Technology, 2004

State Transition Diagram
- DAA Logic FSM

idleidle

waiting?waiting?
releaserelease

available?available?

requestrequest

RR--dl?dl?

grantgrant

yy

nn
nn

makemake
pendingpending

searchsearch
nextnext

pendingpending
GG--dl?dl?

temporarytemporary
grantgrant

grantgrant

comparecompare
prioritiespriorities

yy

requesterrequester
ggive upive up

ownerowner
ggive upive up

yy nn

yy

nn

R>OR>O O>RO>R

FSM: finite state machineFSM: finite state machine
find find

ownerowner

14

©Georgia Institute of Technology, 2004

Outline

MotivationMotivation
TermsTerms
Previous WorkPrevious Work
MethodologyMethodology
ImplementationImplementation
Experimental ResultsExperimental Results
ConclusionConclusion

28
©Georgia Institute of Technology, 2004

Experimentation
- Environment

Simulation PlatformSimulation Platform
Four MPC755 ArchitectureFour MPC755 Architecture

Each CPU has 32KB IEach CPU has 32KB I--Cache and 32KB DCache and 32KB D--CacheCache
100MHz external clock, 100MHz external clock,
16MB shared memory16MB shared memory

AtalantaAtalanta RTOS 0.3RTOS 0.3
By Sun, Blough and Mooney at Georgia TechBy Sun, Blough and Mooney at Georgia Tech

Seamless CVE from Mentor GraphicsSeamless CVE from Mentor Graphics
Instruction accurate simulationInstruction accurate simulation
VCS (VCS (SynopsysSynopsys) and XRAY) and XRAY

15

29
©Georgia Institute of Technology, 2004

Experimentation
- System and Application
Four resourcesFour resources

Q1: Video Interface (VI)Q1: Video Interface (VI)
Q2: MPEGQ2: MPEG
Q3: DSPQ3: DSP
Q4: Wireless Interface (WI)Q4: Wireless Interface (WI)

Each process requires two resources except P4Each process requires two resources except P4
P1: processing a video stream (needs Q1 + Q2)P1: processing a video stream (needs Q1 + Q2)
P2: separating/enhancing frames (needs Q2 + Q3)P2: separating/enhancing frames (needs Q2 + Q3)
P3: extracting special images (needs Q3 + Q1)P3: extracting special images (needs Q3 + Q1)
P4: transferring images (needs Q4)P4: transferring images (needs Q4)

One active process for each processing element (PE)One active process for each processing element (PE)

HW
SW

RTOS

30
©Georgia Institute of Technology, 2004

Experimental Results of DAU

GG--dldl avoidance simulation: Two kindsavoidance simulation: Two kinds
DAU: DAU: SynopsysSynopsys VCS runs compiled Verilog codeVCS runs compiled Verilog code
DAADAA in software: in software: MPC755 runs compiled C code in Seamless CVEMPC755 runs compiled C code in Seamless CVE
Example application invokes deadlock avoidance 12 timesExample application invokes deadlock avoidance 12 times

Q1

P1 P2

Q2 Q3

P3

Q1

P1 P2

Q2 Q3

P3

t1 t2t3 t4
t5

16

31
©Georgia Institute of Technology, 2004

Experimental Results of DAU
(cont’d)
GG--dldl avoidance simulation resultavoidance simulation result
Performance improvementPerformance improvement

99% algorithm execution time reduction99% algorithm execution time reduction
37% reduction37% reduction in an application execution timein an application execution time

312X312X

1X1X

Normalized Normalized
Exe. TimeExe. Time

2188 (average)2188 (average)

7 (average)7 (average)

Algorithm Exe.Algorithm Exe.
Time (cycles)Time (cycles)

4770447704DAA in SoftwareDAA in Software

3479134791DAU HardwareDAU Hardware

Application Exe. Application Exe.
Time (cycles)Time (cycles)

Method of Deadlock Method of Deadlock
AvoidanceAvoidance

32
©Georgia Institute of Technology, 2004

Experimental Results of DAU
(cont’d)
RR--dldl avoidance simulation: Two kindsavoidance simulation: Two kinds

DAU: DAU: SynopsysSynopsys VCS runs compiled VCS runs compiled VerilogVerilog codecode
DAADAA in software: in software: MPC755 runs compiled C code in Seamless CVEMPC755 runs compiled C code in Seamless CVE
Example application invokes deadlock avoidance 14 timesExample application invokes deadlock avoidance 14 times

Q1

P1 P2

Q2 Q3

P3

Q1

P1 P2

Q2 Q3

P3

t1 t2 t3

t5
t4

t6

17

33
©Georgia Institute of Technology, 2004

Experimental Results of DAU
(cont’d)
RR--dldl avoidance simulation resultavoidance simulation result
Performance improvementPerformance improvement

99% algorithm execution time reduction99% algorithm execution time reduction
44% reduction in an application execution time44% reduction in an application execution time

294X294X

1X1X

Normalized Normalized
Exe. TimeExe. Time

5562755627

3850838508

Application Exe. Application Exe.
Time (cycles)Time (cycles)

2102 (average)2102 (average)

7.13 (average)7.13 (average)

Algorithm Exe.Algorithm Exe.
Time (cycles)Time (cycles)

DAA in SoftwareDAA in Software

DAU HardwareDAU Hardware

Method of Deadlock Method of Deadlock
AvoidanceAvoidance

34
©Georgia Institute of Technology, 2004

Synthesis Results of DAU

DAU for 5 processes and 5 resourcesDAU for 5 processes and 5 resources
QualcoreQualcore Logic library with TSMC .25Logic library with TSMC .25µµm technology m technology
0.01% of the total SoC area with four 0.01% of the total SoC area with four PEsPEs and memoryand memory

14721472

364364

Total AreaTotal Area
in terms of in terms of
twotwo--input input

NAND gatesNAND gates

344344DAA LogicDAA Logic

203203
DDU 5x5DDU 5x5

(inside DAU)(inside DAU)

Lines of Verilog HDL Lines of Verilog HDL
CodeCodeModule NameModule Name

TSMC: Taiwan Semiconductor Manufacturing Company
PE: Processing Element

18

35
©Georgia Institute of Technology, 2004

Conclusion with Contribution

Deadlock Avoidance Unit (DAU)Deadlock Avoidance Unit (DAU)
Faster Deadlock Avoidance (312X)Faster Deadlock Avoidance (312X)

No prior knowledge about resource No prior knowledge about resource
requirementsrequirements
No restrictions on resource usageNo restrictions on resource usage
Higher resource utilizationHigher resource utilization
Solution to livelockSolution to livelock

A hardware IP coreA hardware IP core
Small area (.01% in our example SoC)Small area (.01% in our example SoC)

A custom DAU generator for a specific target A custom DAU generator for a specific target
SoCSoC

