
A Framework for Automatic GenerationA Framework for Automatic Generation
of Configuration Files for a Custom of Configuration Files for a Custom

Hardware/Software RTOSHardware/Software RTOS

JaehwanJaehwan Lee*Lee*
KyeongKyeong KeolKeol RyuRyu**

Vincent J. Mooney IIIVincent J. Mooney III++

{{jaehwanjaehwan, , kkryukkryu, , mooney}@ece.gatech.edumooney}@ece.gatech.edu
http://http://codesign.ece.gatech.educodesign.ece.gatech.edu

++Assistant Professor, *School of Electrical and Computer EngineerAssistant Professor, *School of Electrical and Computer Engineeringing
++Adjunct Assistant Professor, College of ComputingAdjunct Assistant Professor, College of Computing

Georgia Institute of TechnologyGeorgia Institute of Technology

26 June 2002 at ERSA26 June 2002 at ERSA HW/SW RTOS Project of the HW/SW HW/SW RTOS Project of the HW/SW CodesignCodesign Group at GTGroup at GT

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project22

OutlineOutline
Introduction

Goals

Motivation

Methodology

Experimental Results

Conclusion

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project33

IntroductionIntroduction

Hardware
RTOS
library

Makefile

User.h

Verilog
File(s)

Software
RTOS
library

GUI tool

Base
Architecture

library

Specify custom HW/SW RTOS
in a graphical user interface
(GUI)

Generate configuration files
used to make a custom RTOS

• A custom RTOS may contain HW
(as well as SW) components

Compile both hardware and
software with an application

Simulate the system to
evaluate the result

User
input

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project44

GoalsGoals

To help the user examine which configuration is
most suitable for the user’s specific applications

To help the user explore the RTOS design space
after chip fabrication as well as before chip
fabrication

To help the user examine different system-on-a-
chip (SoC) architectures subject to a custom RTOS

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project55

Motivation (1/5)Motivation (1/5)

HW/SW RTOS partitioning approach

Three previous innovations in HW/SW RTOS
components

• SoCLC: System-on-a-Chip Lock Cache

• SoCDMMU: System-on-a-Chip Dynamic Memory
Management Unit

• SoCDDU: System-on-a-Chip Deadlock Detection Unit

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project66

Motivation (2/5)Motivation (2/5)
System-on-a-Chip Lock Cache

• A hardware mechanism that resolves the critical section
(CS) interactions among PEs

• Lock variables are moved into a separate “lock cache”
outside of the memory

• Improving the performance criteria in terms of lock
latency, lock delay and bandwidth consumption

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project77

Motivation (3/5)Motivation (3/5)
SoCDMMU: System-on-a-Chip Dynamic Memory
Management Unit

• Provides fast, deterministic and yet dynamic
memory management of a global on-chip memory

• Achieves flexible, efficient memory utilization

• Provides APIs for applications

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project88

Motivation (4/5)Motivation (4/5)
SoCDDU: System-on-a-Chip Deadlock Detection Unit

• Performs a novel parallel hardware deadlock detection based
on implementing deadlock searches on the resource allocation
matrix in hardware

• Provides a very fast deadlock detection at run-time with
dedicated hardware performing simple bit-wise boolean
operations

• Reduces deadlock detection time by 99% as compared to
software

• Requires at most O(2*min(m,n)) iterations as opposed to
O(m*n) required by all previously reported (sequential)
software algorithms

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project99

Motivation (5/5)Motivation (5/5)

Constraints about using three previous innovations
• Perhaps not enough chip space for all three of them

• All of them may not be necessary

⇒ Our framework

• Enables automatic generation of different mixes of the
three previous innovations for different versions of a
HW/SW RTOS

• Can be generalized to instantiate additional HW or SW
RTOS components

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1010

Methodology (1/2)Methodology (1/2)

Hardware
RTOS
library

Makefile

User.h

Verilog
File

Software
RTOS
library

GUI tool

Base
Architecture

library

Translates the user choices into
a custom RTOS

• Given the IP library of processors
and HW/SW RTOS components

Generates configuration files to
glue together a custom RTOS
executable in the Seamless Co-
Verification Environment from
Mentor Graphics

• Makefile and User.h for SW link

• Verilog header file for HW glue

User
input

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1111

Methodology (2/2)Methodology (2/2)

Hardware
RTOS
library

Makefile

User.h

Verilog
File

Software
RTOS
library

GUI tool

Base
Architecture

library

Explores the HW/SW RTOS design space defined by
the available HW/SW RTOS components easily

SW
Compile

and

Link

HW
Compile

Application

User
input

Result
and

Feedback

HW/SW
Co-

Simulation

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1212

Our RTOS and Possible Target Our RTOS and Possible Target SoCSoC

A multiprocessor System-on-a-Chip (Base architecture)

A multiprocessor RTOS

Application(s) running on the SoC using the RTOS APIs

H/W
S/W

RTOS

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1313

Our RTOS in DetailOur RTOS in Detail

Atalanta software RTOS
• A multiprocessor SoC RTOS

The RTOS and device drivers are
loaded into the L2 cache memory

• All Processing Elements (PEs)

share the kernel code and data
structures

Hardware RTOS components are
downloaded into the reconfigurable
logic

H/W
S/W

RTOS

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1414

Selectable RTOS IP componentsSelectable RTOS IP components
Software (Atalanta RTOS)

• Inter-Process Communication (IPC) components

(semaphore, queue, event, mailbox, etc)

• CPU schedulers (priority, round-robin)

• Memory management module (gmm)

• Deadlock detection module (ddm)

Hardware
• SoC Lock Cache for fast IPC (SoCLC)

• Dynamic Memory Management Unit (SoCDMMU)

• Deadlock Detection Unit (SoCDDU)

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1515

Implementation (1/8)Implementation (1/8)

SW module
linking method

IPC module
linking methodHW integration

method

SW may over-
ride task size

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1616

Implementation (2/8)Implementation (2/8)

The user
• Selects

Deadlock detection SW module
Semaphores for synchronization
SoCLC for critical section

• Clicks Generate button

The tool
• Generates

Makefile & User.h
Verilog header file

with Example Use of GUI Tool

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1717

Implementation (3/8)Implementation (3/8)
1) Software module linking method

• Command-line object inclusion method (well-known)

• Used for the same function but different implementations

• Implemented in Makefile

• Used for linking the deadlock detection SW module in the example

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1818

Implementation (4/8)Implementation (4/8)
1) Software module linking method (cont’d)

ddm.o
gmm.o

ddutest.x

Makefile

Linking
Stage

Software component selection

OTHER_OBJS = ddutest.o …
OPT_OBJ1 = ddm.o
OPT_OBJ2 = (blank)

GUI
Tool

$(LD) –o $@ $(OTHER_OBJS) $(OPT_OBJ1) $(OPT_OBJ2) $(LIBRARY)

to

gcc –o ddutest.x [all other objects including ddutest.o] ddm.o atalanta.a

X

Making
Stage

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project1919

Implementation (5/8)Implementation (5/8)
2) Inter-process communication module linking method

• Library function linking method (common)

• Implemented in User.h

• Used for the semaphore function in the example

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2020

Implementation (6/8)Implementation (6/8)
2) IPC module linking method (cont’d)

Making
Stage

user.c

user.h

user.i
Semaphore functions

Queue functions

Mailbox functions

ddutest.x

Generated Configuration

Linking
Stage

Library (Atalanta.a)
…

Event functions

Other functions

Selection flow of IPC methods

Pre-processing

included

GUI
Tool

application

user.o

#define semaphores TRUE

ddutest.c ddutest.o

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2121

Implementation (7/8)Implementation (7/8)
3) HW RTOS component integration method

Novel HW integration method

Construct a Verilog header file

Integrate user-selected HW RTOS
components into the Base architecture

Start with an SoCLC architecture
description (an example with SoCLC)

SoCLC

Reconfig.
Logic

Memory
controller

and
memory

Arbiter,
Intr.

controller,
Clock

MPC750-2

L1

MPC750-1

L1

MPC750-3

L1

MPC750-4

L1

June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2222

Implementation (8/8)Implementation (8/8)
Verilog header file generation example

module PE
~~~

endmodule

IP Library

Start with SoCLC description

module PE
~~~

endmodule

module clock
~~~

endmodule

(i)
Extract

module soclc
~~~

endmodule

…Extract modules

(ii)
Add wires

module PE
~~~

endmodule

module clock
~~~

endmodule

module soclc
~~~

endmodule

wires 
and 
signals

Add wires

(iii)
Instan-
tiation
code

PEs 1,2,3,…

Memory 
1,2,…

SoCLC

Arbiter

Clock

Insert the instantiation code 
for each module



June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2323

Experimental SetupExperimental Setup
Five custom RTOSes

• With semaphores and spin-locks,  no 
HW components in the RTOS

• With SoCLC, no SW IPCs

• With deadlock detection software, no 
HW RTOS components

• With SoCDDU, no SW IPCs

• With SoCLC and SoCDDU

Each with the Base architecture

Each with application(s)
Each executable in Seamless CVE

4 MPC750 processors
Reconfigurable logic
Single bus

RTOS1

SW 
RTOS  w/ 

sem

Hardware 
RTOS 
library

Software 
RTOS 
library

GUI tool

SW 
RTOS + 
SoCLC

SW 
RTOS  w/ 

ddm

SW 
RTOS + 
SoCDDU

SW 
RTOS + 
SoCLC, 

SoCDDU

Compile Stage for each systemApplication

Executable HW file 
for each

Executable SW file 
for each

Simulation in Seamless 
CVE

User
Input

Base 
Architecture 

library

VCS XRAY

RTOS2 RTOS3 RTOS4 RTOS5



June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2424

Experimental Results (1/4)Experimental Results (1/4)
Example 1: Database transaction application [1]

[1] M. A. Olson, “Selecting and implementing an embedded database system,” IEEE Computer, 
pp.27-34, September 2000.

long_Req1

Access of 
Object O2

by transaction1

transaction1

transaction2

transaction3 O4

transaction4

short_Req4short_Req3

O2

O3

long_Req3

O4

O2

Access of 
Object O4

by transaction3

ServerClient



June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2525

Experimental Results (2/4)Experimental Results (2/4)
Comparison with database application example [2]

• RTOS1 with semaphores and spin-locks

• RTOS2 with SoCLC, no SW semaphores or spin-locks

(clock cycles) * Without SoCLC With SoCLC Speedup

Lock Latency 1200 908 1.32x

Lock Delay 47264 23590 2.00x

Execution Time 36.9M 29M 1.27x

* Semaphores for long critical sections  (CSes) and 
spin-locks for short CSes are used instead of SoCLC.

[2] B. S. Akgul, J. Lee and V. Mooney, “System-on-a-chip processor synchronization hardware 
unit with task preemption support,” CASES ‘01, pp.149-157, November 2001.



June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2626

Experimental Results (3/4)Experimental Results (3/4)
Example 2: Interactions between multiple processors and resources [3]

[3] S. Morgan, “Jini to the rescue,” IEEE Spectrum, 37(4), pp 44-49, April 2000. 

Memory 
controller

and 
memory

Arbiter,
Intr. 

controller,
Clock

DDU

Reconfig. 
Logic

FFT

R1

MPEG

R2

PCI

R3

WI

R4

MPC750-1 MPC750-2 MPC750-3 MPC750-4



June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2727

Experimental Results (4/4)Experimental Results (4/4)
Comparison with deadlock detection example [4]

• RTOS3 with a software deadlock detection module, no HW RTOS

• RTOS4 with SoCDDU

Method of Deadlock 
Detection

Software 
Algorithm SoCDDU

Detection Time ∆
(clock cycles) 16928 2

Execution time up to 
deadlock detection 61131 44205

[4] P. H. Shiu, Y. Tan and V. Mooney, “A novel parallel deadlock detection algorithm and 
architecture,” CODES ‘01, pp.30-36, April 2001.

Speedup

8463x

1.38x



June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2828

Hardware AreaHardware Area

Total area in
SoCLCSoCLC

(For 64 short CS locks +
64 long CS locks)

SoCDDUSoCDDU
(For 5 Processors x

5 Resources)

Semi-custom VLSI 7435 gates using TSMC 0.25µm 
standard cell library

364 gates using AMI 
0.3µm standard cell library

Xilinx
XC4000E 4003EPC84

# Seq. logic 532 10

# Other gates 9036 559



June 2002 at ERSAJune 2002 at ERSA HW/SW RTOS ProjectHW/SW RTOS Project2929

ConclusionConclusion

A framework for automatic generation of configuration 
files for a custom HW/SW RTOS

A novel HW header file generation methodology

Experimental results showing

• the configured systems are correct

A framework used to explore the RTOS design space.

Future work

support for heterogeneous processors

support for multiple bus systems/structures


