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Introduction
Power/energy is a top 
most bottle neck in 
embedded systems
Mobile devices require 
longer usage time
Trade-off between 
performance and power
Reducing power/energy 
without performance loss
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Motivation & previous work

A cache is a power 
hungry component of 
a system
Caches consume 
42% of a Strong 
ARM 110 processor*

Non-
cache

Caches

*J. Montanaro and et. al., “A 160-mhz, 32-b, 0.5-w cmos risc microprocessor,”
IEEE Journal of Solid-State Circuits, 31(11):1703–1714, 1996.
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Motivation & previous work
Intel XScale processor supports multiple frequencies and 
voltages
• L. T. Clarl and et. al., “An embedded 32-b microprocessor core for 

lowpower and high-performance applications,” IEEE Journal of Solid-
State Circuits, 36(11):1599–1608, November 2001.

High voltage supply for critical paths and low voltage supply for 
non-critical paths
• V. Moshnyaga and H. Tsuji, “Cache energy resuction by dual voltage 

supply,” In Proc. Int. Symp. Circuit and System, pages 922–925, 2001.
Pipelining a cache to achieve lower cycle time
• T. Chappell, B. Chappell, S. Schuster, J. Allan, S. Klepner, R. Joshi,

and R. Franch, “A 2-ns cycle, 3.8-ns access 512-kb cmos ecl sram
with a fully pipelined architecture,” IEEE Journal of Solid-State 
Circuits, 26(11):1577–1585, 1991.
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Approach
Case1. Non-pipelined caches with the same voltages as the processor

IF ID EX ME WB
Vdd

IF1 IF2 ID EX ME1 ME2 WB

I.$1 I.$ 2 D.$1 D.$ 2

I.$ D.$

Case2. Caches pipelined with lower supply voltage and same cycle
time with case1

Vdd

Lower
Vdd
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Approach (Cont.)
Case 2 uses same cycle time as case 1: 
ideally same execution time
Case 2 saves power using lower supply 
voltage
Two bottle necks
• Branch penalty: branch misprediction adds overhead 

for pipelined instruction cache
• Load use penalty: a load instruction immediately 

followed by dependent instruction adds overheads for 
pipelined data cache
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Methodology

Processor Model Cache Model

+

System Energy
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Processor Model
MARS
• A cycle-accurate Verilog model of a 5-stage RISC 

processor from U. Mich.
• Capable of running ARM instruction
• Non-pipelined caches
• BTFN (backward taken forward non-taken) branch 

prediction
MARS with 7-stage pipeline
• 128 entry BTB (branch target buffer) with 2-bit counter
• 2-stage IF (instruction fetch), 2-stage ME (memory access)
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Processor Model (Cont.)

Compile benchmarks 
using ARM-gcc compiler 
and generate hex ARM 
instructions called VHX 

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional 
Simulation (VCS)

Toggle Rate (Activity) 
Generation

Processor Core Power

Synthesize 
Verilog Model
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Processor Model (Cont.)

Functional simulation 
using Synopsys VCS
Collect toggle rate of 
internal logic signals using 
Synopsys VCS simulation

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional 
Simulation (VCS)

Toggle Rate (Activity) 
Generation

Processor Core Power

Synthesize 
Verilog Model
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Processor Model (Cont.)

Synthesize Verilog model 
using TSMC .25µ library

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional 
Simulation (VCS)

Toggle Rate (Activity) 
Generation

Processor Core Power

Synthesize 
Verilog Model
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Processor Model (Cont.)

Estimate power using 
Synopsys Power Compiler

Benchmark Program (C/C++)

Binary Translation

ARM9 Based System Architecture

Functional 
Simulation (VCS)

Toggle Rate (Activity) 
Generation

Processor Core Power

Synthesize 
Verilog Model



Asilomar  Nov. 05 2002 14

Cache model

CACTI 2.0*
• An integrated cache access time, cycle time, 

and power model
• Time and power estimation of each 

component
• RC based more detailed delay model used for 

technology scaling (i.e. supply voltage, 
threshold voltage)*

*G. Reinman and N. Jouppi, Cacti version 2.0, http://www.research.digital.com/wrl/people/jouppi/CACTI.html.
**N.Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison Wesley, Santa Clara, California, 1992.

http://www.research.digital.com/wrl/people/jouppi/CACTI.html
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Cache model (Cont.)
The cache circuit is split into two 
parts for pipelining
• Pipeline stage 1: decoder, tag array, 

data array
• Pipeline stage 2: mux, sense-

amplifier, comparator
Timing order of the circuit-level 
critical path considered
Direct mapped and 32B block size
16KB, 32KB, 64KB, 128KB, 
256KB, 512KB cache size 
simulated

CACTI 2.0 cache model
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Cache model (Cont.)
Delay for Pipeline 1

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped )
Delay for Pipeline 2

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped )

• Delay is increased according to the supply voltage
• Delay of the pipeline stage 1 is also dependent on the cache size
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Cache model (Cont.)
Energy for Pipeline 1

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped )
Energy for Pipeline 2

(Cache Size: 16K-512K, Block Size: 32, Direct Mapped )

• Energy is dependent on the cache size and the supply voltage
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Optimization of energy and 
delay

Pipelined cache for high-
performance
• Reduced cycle time with same 

supply voltage

Pipelined cache for low-power
• Reduced supply voltage without 

changing cycle time

delay

cycle time = 10 ns

Base case

Vdd = 2.75 V

Pipelined cache 
for high-performance

delay delay

cycle time = 5 ns

Vdd = 2.75 V

E = C(2.75)2 = 7.56C

Energy savings = (7.56 – 2.56)C/7.56*100 = 66%

idle

Pipelined cache 
for low-power

delay

cycle time = 10 ns

Vdd = 1.6 V

E = C(1.6)2 = 2.56C
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Optimization of energy and 
delay (Cont.)

Optimized supply voltage for cache
Voltage optimization procedure for pipelined cache
Input: Vdd Range, delay_base
Output: Power optimal Vdd
Vdd Range  ← [2.75V – 0.6V]
Vdd(0) = Max(Vdd Range);
For i steps do

Calculate delay_stage1(Vdd(i));
Calculate delay_stage2(Vdd(i));
If Max[delay_stage1{Vdd(i)}, delay_stage2{Vdd(i)}] < dealy_base

Vdd_optimal = Vdd(i);
endIf
Decrease Vdd(i);

endFor
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Optimization of energy and 
delay (Cont.)

Pipelined cache saves maximum 69.60% 
energy saving 

Energy/delay for a pipelined cache

3.84 101.422 2.70.194 12.030 105.477 12.224 2.75512

7.62 50.442 2.650.195 6.060 54.605 6.254 2.75256

18.52 22.767 2.50.199 2.991 27.942 3.190 2.75128

31.95 10.450 2.30.201 1.540 15.357 1.741 2.7564

49.73 4.534 20.206 0.814 9.019 1.021 2.7532

69.60 1.729 1.60.210 0.438 5.689 0.648 2.7516

% savingEnergy(nJ)Vdd(V)Delay2(nS)Delay1(nS)Energy(nJ)Delay(nS)Vdd(V)Cache(KB)

Pipelined cacheBase case
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Results
Execution time increased 15.35% due to the branch 
misprediction penalty and load use penalty
• More accurate branch prediction scheme required
• Dynamic instruction scheduling such as out-of-order execution or 

static instruction scheduling such as compiler optimization required

Execution Time (ICache=16KB, DCache=16KB)

15.35Average

17.43106347719105740635178125fib

15.0098722119698119234510024factorial

9.65108647987107943765151105arith

16.361121105293111490485512604matmul

18.31100831465100226595201177sort_int

E.T.% 
Increment

Core 
Power(mW)E.T(ns)

Core 
Power(mW)E.T(ns)Load useMispredictionBenchmark

Pipelined cache 
processorBase case
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Results (Cont.)
Average 24.85% power saving
Processor core power does not change much for 5-stage 
and 7-stage
Variation of total processor power is mainly dependent on 
cache power

Power distribution (ICache=16KB, DCache=16KB)

24.85Average

27.09125339151106317191495131057fib

26.241161311439871574118475981factorial

22.9612581815410861634664881079arith

24.27129237134112117061424501114matmul

23.6711542512010081511984111002sort_int

% ReductionTotalD. CacheI. CacheCore PowerTotalD. CacheI. CacheCore PowerBenchmark

Pipelined cache (mW)Base case (mW)
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Results (Cont.)
Average 13.33% energy saving
The increment of execution time degrades the energy 
reduction
To maximize the advantage of pipelined cache, a precise 
branch prediction scheme and instruction scheduler (load 
use) required

Energy distribution (ICache=16KB, DCache=16KB)

13.33Average

14.385981018407227507436985160532084542953fib

15.172568106928316622182203027472279191328188628factorial

15.53603928807406521057149628962136347238arith

11.871360503898141181180341543771282340723100830matmul

9.70362987943789317154019526061092926660sort_int

% ReductionTotalD. CacheI. CacheCore EnergyTotalD. CacheI. CacheCore EnergyBenchmark

Pipelined cache (nJ)Base case (nJ)
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Conclusion and future work

Pipelined cache with lower supply voltage 
explored
Maximum 69.6%  cache energy saving
24.85% power and 13.33% energy saved
The savings of the power are masked by the 
execution time increment
Branch prediction and load use penalty must 
be considered to maximize energy saving
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Thank you.
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