

Pareto Points in SRAM Design Using the Sleepy Stack Approach

Jun Cheol Park[^] and Vincent J. Mooney III*

*Associate Director, ^Center for Research on Embedded Systems and Technology (CREST), http://www.crest.gatech.edu *Associate Professor, ^School of Electrical and Computer Engineering *Adjunct Associate Professor, College of Computing *Founder, Hardware/Software Codesign Lab, http://codesign.ece.gatech.edu Georgia Institute of Technology, Atlanta, GA, USA

> IFIP VLSI-SoC October 2005

Outline CRest

Introduction

- Related work
- Sleepy stack structure
- Sleepy stack SRAM
- Conclusion

Power consumption

- Power consumption of VLSI is a fundamental problem of mobile devices as well high-performance computers
 - Limited operation (battery life)
 - Heat
 - Operation cost
- Power = dynamic + static
 - Dynamic power more than 90% of total power (0.18u tech. and above)
- Dynamic power reduction:
 - Technology scaling
 - Frequency scaling
 - Voltage scaling

□ I/O 70 Switching 130nm to 90nm Subthreshold Transition 1.8GHz 60 Gate 2.5GHz Frequency Scaling 50 Power (W) 40 Voltage Scaling 625 MHz -30 625MHz 20 @1.0V 10 0 970 970+ 970+ 970+ **IBM PowerPC 970***

*N. Rohrer et al., "PowerPC 970 in 130nm and 90nm Technologies," *IEEE International Solid-State Circuits Conference,* Vol. 1, pp. 68-69, February 2004.

Leakage power

- Leakage power became important as the feature size shrinks
- Subthreshold leakage
 - Scaling down of Vth: Leakage increases exponentially as Vth decreases
 - Short-channel effect: channel controlled by drain
 - Our research focus
- Gate-oxide leakage
 - Gate tunneling due to thin oxide
 - High-k dielectric could be a solution

Experimental result 4-bit adder*

^{*}Berkeley Predictive Technology Model (BPTM).

[Online]. Available http://www-device.eecs.berkeley.edu/~ptm. ⁵

Outline Crest

- Introduction
- Related work
- Sleepy stack structure
- Sleepy stack SRAM
- Conclusion

Low-leakage SRAM

- Auto-Backgate-Controlled Multi Threshold CMOS (ABC-MTCMOS) [Nii98]
 - Reverse source-body bias during sleep mode
 - Slow transition and large dynamic power to charge n-wells
- Gated-Vdd [Powell00](Prof. K. Roy)
 - Isolate SRAM cells using sleep transistor
 - Loses state during sleep mode
- Drowsy cache [Flautner02]
 - O Scaling Vdd dynamically
 - Smaller leakage reduction (<86%) (we will show 3 orders magnitude reduction)

© Georgia Institute of Technology, 2005

ABC-MTCMOS

CREST

GEORGIA TECH

Low-leakage SRAM

- Auto-Backgate-Controlled Multi Threshold CMOS (ABC-MTCMOS) [Nii98]
 - Reverse source-body bias during sleep mode
 - Slow transition and large dynamic power to charge n-wells
- Gated-Vdd [Powell00](Prof. K. Roy)
 - Isolate SRAM cells using sleep transistor
- Loses state during sleep mode
- Drowsy cache [Flautner02]
 - Scaling Vdd dynamically
 - Smaller leakage reduction (<86%) (we will show 3 orders magnitude reduction)

Gated-VDD

*Intel introduces 65-nm sleep transistor SRAM from Intel.com , "65-nm process technology extends the benefit of Moore's law"

Low-leakage SRAM

- Auto-Backgate-Controlled Multi Threshold CMOS (ABC-MTCMOS) [Nii98]
 - Reverse source-body bias during sleep mode
 - Slow transition and large dynamic power to charge n-wells
- Gated-Vdd [Powell00](Prof. K. Roy)
 - Isolate SRAM cells using sleep transistor
 - Loses state during sleep mode
- Drowsy cache [Flautner02]
 - Scaling Vdd dynamically
 - Smaller leakage reduction (<86%) (we will show 3 orders magnitude reduction)

© Georgia Institute of Technology, 2005

Drowsy cache

CREST GEORGIA TECH

Low-leakage SRAM comparison

Sleepy stack SRAM cell
No need to charge n-well (ABC-MTCMOS)
State-saving (gated-Vdd)
Larger leakage power savings (drowsy cache)

Outline Crest

- Introduction
- Related work
- Sleepy stack structure
- Sleepy stack SRAM
- Conclusion

Introduction of sleepy stack

- New state-saving ultra low-leakage technique
- Combination of the sleep transistor and forced stack technique
- Applicable to generic VLSI structures as well as SRAM
- Target application requires long standby with fast response, e.g., cell phone

Sleepy stack structure

Conventional CMOS inverter Sleepy stack inverter

- First, break down a transistor similar to the forced stack technique
- Then add sleep transistors

- During active mode, sleep transistors are on, then reduced resistance increases current while reducing delay
- During sleep mode, sleep transistors are off, stacked transistors suppress leakage current while saving state
- Can apply high-Vth, which is not used in the forced stack technique due to the dramatic delay increase (>6.2X)

Sleepy stack for logic

Apply sleepy stack to a chain of 4 inverters

Targeting 0.07u technology

- Compared to forced stack, the best prior state-saving low leakage technique, sleepy stack with dual-Vth achieves 215X reduction in leakage power with 6% decrease in delay
- Sleepy stack is 51% larger than forced stack

Published in PATMOS 2004

Outline Crest

- Introduction
- Related work
- Sleepy stack structure
- Sleepy stack SRAM
- Conclusion

Sleepy stack SRAM cell

- Sleepy stack technique achieves ultra-low leakage power while saving state
- Apply the sleepy stack technique to SRAM cell design
 - Large leakage power saving expected in cache
 - State-saving
 - 6-T SRAM cell is based on coupled inverters
- SRAM cell leakage paths
 - Cell leakage
 - Bitline leakage

Sleepy stack SRAM cell

Sleepy stack SRAM cell
PD sleepy stack
PD, WL sleepy stack
PU, PD sleepy stack
PU, PD, WL sleepy stack
Area, delay and leakage

power tradeoffs

Experimental methodology

- Estimate area by scaling down 0.18µ layout
- Estimate dynamic power, static power and cell read time using BPTM 0.07u technology

*NC State University Cadence Tool Information. [Online]. Available http://www.cadence.ncsu.edu. **Berkeley Predictive Technology Model (BPTM). [Online]. Available http://www-device.eecs.berkeley.edu/~ptft?

Experimental methodology

- Base case and three techniques are compared
 - High-Vth technique, forced stack, and sleepy stack
- 64x64 bit SRAM array designed
- Area estimated by scaling down 0.18µ layout
 - Area of 0.18u layout*(0.07u/0.18u)
- Power and read time using HSPICE targeting 0.07μ
- 1.5xVth and 2.0xVth
- 25°C and 110°C

-			
	Technique		
Case1	Low-Vth Std	Conventional 6T SRAM	
Case2	PD high-Vth	High-Vth applied to PD	
Case3	PD, WL high-Vth	High-Vth applied to PD, WL	
Case4	PU, PD high-Vth	High-Vth applied to PU, PD	
Case5	PU, PD, WL high-Vth	High-Vth applied to PU, PD, WL	
Case6	PD stack	Stack applied to PD	
Case7	PD, WL stack	Stack applied to PD, WL	
Case8	PU, PD stack	Stack applied to PU, PD	
Case9	PU, PD, WL stack	Stack applied to PU, PD, WL	
Case10	PD sleepy stack	Sleepy stack applied to PD	
Case11	PD, WL sleepy stack	Sleepy stack applied to PD, WL	
Case12	PU, PD sleepy stack	Sleepy stack applied to PU, PD	
Case13	PU, PD, WL sleepy stack	Sleepy stack applied to PU, PD, WL	

CREST at GEORGIA TECH

Experimental methodology

PU, PD, WL sleepy stack is 113% and 83% larger than base case and PU, PD, WL forced stack, respectively

 At 110°C, the worst case, leakage power: forced stack > high-Vth 2xVth > sleepy stack 2xVth
© Georgia Institute of Technology, 2005

 _		~ ~
roc		tto.
	(H)	
IUC		

	Technique	Leakage	Delay (sec)	Area (u^2)	Normalized	Normalized	Normalized
	1	power (W)			leakage power	delay	area
Case1	Low-Vth Std	1.254E-03	1.05E-10	17.21	1.000	1.000	1.000
Case2	PD high-Vth	7.159E-04	1.07E-10	17.21	0.571	1.020	1.000
Case6	PD stack	7.071E-04	1.41E-10	16.22	0.564	1.345	0.942
Case10*	PD sleepy stack*	6.744E-04	1.15E-10	25.17	0.538	1.102	1.463
Case10	PD sleepy stack	6.621E-04	1.32E-10	22.91	0.528	1.263	1.331
Case4	PU, PD high-Vth	5.042E-04	1.07E-10	17.21	0.402	1.020	1.000
Case8	PU, PD stack	4.952E-04	1.40E-10	15.37	0.395	1.341	0.893
Case12*	PU, PD sleepy stack*	4.532E-04	1.15E-10	31.30	0.362	1.103	1.818
Case12	PU, PD sleepy stack	4.430E-04	1.35E-10	29.03	0.353	1.287	1.687
Case3	PD, WL high-Vth	3.203E-04	1.17E-10	17.21	0.256	1.117	1.000
Case7	PD, WL stack	3.202E-04	1.76E-10	19.96	0.255	1.682	1.159
Case11*	PD, WL sleepy stack*	2.721E-04	1.16E-10	34.40	0.217	1.111	1.998
Case11	PD, WL sleepy stack	2.451E-04	1.50E-10	29.87	0.196	1.435	1.735
Case5	PU, PD, WL high-Vth	1.074E-04	1.16E-10	17.21	0.086	1.110	1.000
Case9	PU, PD, WL stack	1.043E-04	1.75E-10	19.96	0.083	1.678	1.159
Case13*	PU, PD, WL sleepy stack*	4.308E-05	1.16E-10	41.12	0.034	1.112	2.389
Case13	PU, PD, WL sleepy stack	2.093E-05	1.52E-10	36.61	0.017	1.450	2.127

1.5xVth at 110°C

- Sleepy stack delay is matched to Case5 ("*" means delay matched to Case5=best prior work)
- Sleepy stack SRAM provides new pareto points (blue rows)
- Case13 achieves 5.13X leakage reduction (with 32% delay increase), alternatively Case13* achieves 2.49X leakage reduction compared to Case5 (while matching delay to Case5)

	Technique	Statio (W)	Dalay (saa)	A	Normalized	Normalized	Normalized
	rechnique	Static (W)	Delay (sec)	Area (u)	leakage	delay	area
Case1	Low-Vth Std	1.25E-03	1.05E-10	17.21	1.000	1.000	1.000
Case6	PD stack	7.07E-04	1.41E-10	16.22	0.564	1.345	0.942
Case2	PD high-Vth	6.65E-04	1.11E-10	17.21	0.530	1.061	1.000
Case10	PD sleepy stack	6.51E-04	1.31E-10	22.91	0.519	1.254	1.331
Case10*	PD sleepy stack*	6.51E-04	1.31E-10	22.91	0.519	1.254	1.331
Case8	PU, PD stack	4.95E-04	1.40E-10	15.37	0.395	1.341	0.893
Case4	PU, PD high-Vth	4.42E-04	1.10E-10	17.21	0.352	1.048	1.000
Case12*	PU, PD sleepy stack*	4.31E-04	1.33E-10	29.48	0.344	1.270	1.713
Case12	PU, PD sleepy stack	4.31E-04	1.38E-10	29.03	0.344	1.319	1.687
Case7	PD, WL stack	3.20E-04	1.76E-10	19.96	0.255	1.682	1.159
Case3	PD, WL high-Vth	2.33E-04	1.32E-10	17.21	0.186	1.262	1.000
Case11*	PD, WL sleepy stack*	2.29E-04	1.30E-10	32.28	0.183	1.239	1.876
Case11	PD, WL sleepy stack	2.28E-04	1.62E-10	29.87	0.182	1.546	1.735
Case9	PU, PD, WL stack	1.04E-04	1.75E-10	19.96	0.083	1.678	1.159
Case5	PU, PD, WL high-Vth	8.19E-06	1.32E-10	17.21	0.007	1.259	1.000
Case13*	PU, PD, WL sleepy stack*	3.62E-06	1.32E-10	38.78	0.003	1.265	2.253
Case13	PU, PD, WL sleepy stack	2.95E-06	1.57E-10	36.61	0.002	1.504	2.127

2.0xVth at 110°C

- Sleepy stack delay is matched to Case5 ("*" means delay matched to Case5=best prior work)
- Sleepy stack SRAM provides new pareto points (blue rows)
- Case13 achieves 2.77X leakage reduction (with 19% delay increase over Case5), alternatively Case13* achieves 2.26X leakage reduction compared to Case5 (while matching delay to Case5)

© Georgia Institute of Technology, 2005

Tradeoffs

Static noise margin

	Tachniqua	Static noise margin (V)		
	rechnique	Active mode	Sleep mode	
Case1	Low-Vth Std	0.299	N/A	
Case10	PD sleepy stack	3.167	0.362	
Case11	PD, WL sleepy stack	0.324	0.363	
Case12	PU, PD sleepy stack	0.299	0.384	
Case13	PU, PD, WL sleepy stack	0.299	0.384	

Measure noise immunity using static noise margin (SNM)
SNM of the sleepy stack is similar or better than the base case

- Sleepy stack SRAM cell provides new pareto points in ultra-low leakage power consumption
- 2.77X leakage reduction over high-Vth with 19% delay increase or 2.26X without delay increase
- Sleepy stack SRAM cell shows the same or better SNM than the base case