Sleepy Stack Reduction of Leakage Power

J.C. Park, V.J. Mooney III and P. Pfeiffenberger

Center for Research on Embedded Systems and Technology School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia, U.S.A.

Sleepy Stack Introduction

State-Saving Static Power Approach

Tradeoffs

- Ultra-low static power
- Area, delay penalties

Subthreshold leakage

- Source gating
- High Threshold Voltage Transistors
- Stack effect

Previous Approaches

Stack

- Induce a reverse bias in cutoff
- Sleep
 - Disconnect Vdd/Gnd when circuit is idle

ZigZag

- Induce favorable state when circuit is idle
- Disconnect one supply network terminal

Stack Implementation

- Duplicate transistors
 - Forces negative V_{gs} in cut-off
- Delay Penalty
 - Sizing tradeoff: greater gate capacitance or greater resistance?
 - Half-width transistors
- Dual V_{th} applicability
 - 4x delay increase

Sleep Implementation

- Source Gating
- Dual threshold possibility
 - Sleep transistors can be slow
- Additional routing
 - S and complement
 - "Virtual" Vdd / Gnd
- State Destructive
- Floating Output

ZigZag Implementation

- Favored input vector
- Faster recovery than sleep approach
 - An optimal input vector is pre-loaded
 - No recovery from Z necessary
- State destructive
- High V_{th} applicable

Sleepy Stack

- Sleepy stack
 - Source gating
 - Stack effect
- Novel application of dual V_{th}
 - Decreased delay penalty
 - Effective leakage reduction

Inverter, input "0"

Sleepy Stack

State-saving

- Path to Vdd/Gnd
- Effective blocking of complement
- Use of high V_{th} only to block leakage current

Assessments

- Implementations
 - 3 Inverter chain
 - 4:1 MUX
 - Full adder
- Criteria
 - Static Power
 - Dynamic Power
 - Delay
 - Area

Implementations

3 Inverter Chain

Implementations

4:1 MUX

4:1 MUX

NOR

Implementations

4 Adder Chain

Full Adder (Base Case)

Full Adder (Sleepy Stack)

Experiments

- Simulation-based measurements
 - Avant! HSPICE [11]
 - NCSU Model targeting TSMC's process for 0.18u
 - Berkeley Model for 0.18u, 0.13u, 0.10u, 0.07u [12]
- Criteria
 - Delay across critical path
 - Average dynamic and static power
 - Area
 - Cadence Virtuoso
 - Full layouts for TSMC 0.18u
 - Scaled for 0.13u, 0.10u, 0.07u

TSMC 0.18µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ^2)
Base case	9.56E-11	4.50E-11	3.16E-06	23.59
Stack	2.46E-10	8.99E-12	3.20E-06	26.91
Sleep	1.56E-10	1.44E-11	4.79E-06	48.09
ZigZag	1.34E-10	5.63E-12	5.43E-06	33.32
Sleepy Stack	1.78E-10	1.64E-11	3.46E-06	40.73
Sleep (dual Vth)	2.22E-10	1.09E-12	4.56E-06	48.09
ZigZag (dual Vth)	1.76E-10	1.06E-17	5.21E-06	33.32
Sleepy Stack (dual Vth)	2.19E-10	5.96E-16	3.18E-06	40.73
Berkeley 0.18µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ^2)
Base case	7.73E-11	1.70E-09	4.94E-06	23.59
Stack	1.95E-10	2.31E-10	3.63E-06	26.91
Sleep	1.06E-10	5.48E-10	7.79E-06	48.09
ZigZag	1.01E-10	3.31E-10	8.69E-06	33.32
Sleepy Stack	1.38E-10	4.05E-10	4.85E-06	40.73
Sleep (dual Vth)	1.55E-10	1.11E-12	6.83E-06	48.09
ZigZag (dual Vth)	1.47E-10	4.14E-16	8.04E-06	33.32
Sleepy Stack (dual Vth)	1.87E-10	4.99E-14	3.99E-06	40.73
Barkalay 0 13.	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	$\Lambda rea (u^2)$
Base case	7.00F 11	1 48E 00	2 15E 06	13.54
Stook	1.70E-11	1.46E-09	2.13E-00	15.34
Stack	0.24E 11	1.00E-10	2.21E.06	27.50
ZigZag	9.34E-11 9.14E-11	2.04E-10	3.21E-06	10.12
Sloopy Staak	0.14E-11	2.32E-10	2.02E.06	22.27
Sleep (dual Vth)	1.20E-10	6.73E-13	2.03E-00	23.37
ZigZag (dual Vth)	1.41E-10	0.73E-15	2.02E-00	10.12
Sloopy Stook (dual Vth)	1.6/E-10	1 75E 12	1 77E 06	22.27
Sleepy Stack (dual vill)	1.041-10	1.751-15	1.7712-00	23.37
Parkalay 0 10.	Propagation dalay (g)	Statia Power (W)	Dunamia Dowar (W)	$\Delta rop(u^2)$
Pasa ansa	5 26E 11	6 74E 00	1.67E.06	$\frac{1}{801}$
Stack	1.30E-11	0.74E-09	1.07E-00	0.01
Slack	7.05E-10	2.8/E-10	2.66E.06	9.14
ZigZag	6.21E-11	5.40E 10	2.000-00	11.31
Sleepy Stack	0.21E-11 0.28E-11	5 30E 10	2.80E-00	13.83
Sleep (dual Vth)	9.20E-11	5 30E 13	2.15E.06	16.33
ZigZag (dual Vth)	9 29E 11	2 44E 14	2.13E-00	11.33
Sloopy Stook (dual Vth)	0.20E-11	5.19E 12	2.08E-00	12.92
Sleepy Stack (dual vill)	1.221-10	5.161-15	1.1/12-00	15.85
	D			2.
Berkeley 0.0/µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ)
Base case	4.61E-11	1.24E-08	6.56E-07	3.92
Stack	1.28E-10	9.89E-10	4.08E-07	4.48
Sleep	6.98E-11	2.40E-09	9.49E-07	8.00
ZıgZag	5.99E-11	2.2/E-09	1.05E-06	5.54
Sleepy Stack	8.75E-11	1.77E-09	6.35E-07	6.78
Sleep (dual Vth)	1.14E-10	4.32E-13	8.58E-07	8.00
ZıgZag (dual Vth)	9.03E-11	3.84E-13	9.87E-07	5.54
Sleepy Stack (dual Vth)	1.38E-10	9.88E-13	4.88E-07	6.78

3 Inverter Chain

3-inv highlights of state saving approaches

- Static Power ٠
 - Stack approach (single Vth)
 - 0.18u: 2.31E-10
 - 0.07u: 9.89E-10
 - Sleepy Stack approach (dual Vth)
 - 0.18u: 4.99E-14 (4629x reduction)
 - 0.07u: 9.88E-13 (1001x reduction)
- Delay ٠
 - Stack approach (single Vth)
 - 0.18u: 1.95E-10 s
 - 0.07u: 1.28E-10 s
 - Sleepy Stack approach (dual Vth)
 - 0.18u: 1.87E-10 s (4% faster)
 - 0.07u: 1.38E-10 s (7% slower)
- Area ٠
 - Sleepy Stack approach requires 72% more area than the stack approach

3 Inverter Chain Results

TSMC 0.18u	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ^2)
Base case	6.97E-10	3.87E-10	1.51E-04	138.00
Stack	1.70E-09	2.24E-10	1.30E-04	186.00
Sleep	9.43E-10	1.10E-10	1.55E-04	186.00
ZigZag	9.45E-10	5.49E-11	1.43E-04	166.00
Sleepv Stack	1.36E-09	1.58E-10	1.31E-04	396.00
Sleep (dual Vth)	1.26E-09	1.86E-11	1.59E-04	186.00
ZigZag (dual Vth)	1.26E-09	1.21E-11	1.43E-04	166.00
Sleepy Stack (dual Vth)	1.73E-09	3.83E-11	1.21E-04	396.00
(
Berkeley 0.18u	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	A rea (u^2)
Base case	5 07E-10	3 04F-08	1 41F-04	138.00
Stack	1 50E-09	2.96E-09	1.41E-04	186.00
Sleen	6 79E-10	4.51E-09	1.21E-04	186.00
ZigZag	6.83E-10	2.51E-09	1.40E-04	166.00
Sleenv Stack	1 18E-09	4 30E-09	1.33E-04	396.00
Sleep (dual Vth)	9 38E-10	1.33E-11	1.27E-04	186.00
ZigZag (dual Vth)	9.58E-10	8 12E 12	1.33E-04	166.00
Sleepy Stack (dual Vth)	9.53E-10	3.51E-11	1.3712-04	396.00
Sleepy Stack (dual vill)	1.0512-07	5.511-11	1.101-04	570.00
D 1 1 0 10	D			1 (²)
Berkeley 0.13µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ)
Base case	4.15E-10	2.40E-08	6.10E-05	/9.18
Stack	1.21E-09	9.69E-10	5.20E-05	106.72
Sleep	5.46E-10	1.98E-09	6.19E-05	106.72
ZigZag	5.43E-10	1.25E-09	5.83E-05	95.25
Sleepy Stack	9.35E-10	1.63E-09	5.42E-05	227.21
Sleep (dual Vth)	7.53E-10	6.96E-12	6.4/E-05	106.72
ZigZag (dual Vth)	7.56E-10	1.66E-12	5.90E-05	95.25
Sleepy Stack (dual vth)	1.21E-09	2.22E-11	4.94E-05	227.21
				2
Berkeley 0.10µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (µ ²)
Base case	3.08E-10	9.75E-08	3.68E-05	46.85
Stack	8.95E-10	3.20E-09	3.00E-05	63.15
Sleep	4.13E-10	5.26E-09	3.73E-05	63.15
ZigZag	4.17E-10	3.23E-09	3.54E-05	56.36
Sleepy Stack	7.01E-10	5.05E-09	3.19E-05	134.44
Sleep (dual Vth)	5.55E-10	5.72E-12	3.85E-05	63.15
ZigZag (dual Vth)	5.62E-10	4.94E-12	3.55E-05	56.36
Sleepy Stack (dual Vth)	9.14E-10	2.38E-11	2.92E-05	134.44
Berkeley 0.07µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ^2)
Base case	2.91E-10	1.81E-07	1.52E-05	22.96
Stack	8.89E-10	9.25E-09	1.24E-05	30.94
Sleep	4.11E-10	1.69E-08	1.54E-05	30.94
ZigZag	4.06E-10	1.20E-08	1.47E-05	27.62
Sleepy Stack	6.79E-10	1.50E-08	1.31E-05	65.88
Sleep (dual Vth)	6.20E-10	3.31E-12	1.61E-05	30.94
ZigZag (dual Vth)	6.15E-10	4.92E-12	1.47E-05	27.62
Sleepy Stack (dual Vth)	1.03E-09	1.88E-11	1.22E-05	65.88

4:1 MUX

4:1 MUX highlights of state saving approaches

- Static Power
 - Stack approach (single Vth)
 - 0.18u: 1.55E-9
 - 0.07u: 8.63E-9
 - Sleepy Stack approach (dual Vth)
 - 0.18u: 3.42E-12 (453x reduction)
 - 0.07u: 8.19E-12 (1053x reduction)
- Delay
 - Stack approach (single Vth)
 - 0.18u: 5.50E-10 s
 - 0.07u: 3.39E-10 s
 - Sleepy Stack approach (dual Vth)
 - 0.18u: 5.76E-10 s (5% slower)
 - 0.07u: 3.97E-10 s (15% slower)
- Area
 - Sleepy Stack approach requires 118% more area than the stack approach

4:1 MUX Results

				~
TSMC 0.18µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ^2)
Base case	2.58E-10	2.89E-10	4.07E-05	301.60
Stack	7.26E-10	4.87E-11	3.45E-05	345.06
Sleep	3.63E-10	7.71E-11	3.40E-05	445.50
ZigZag	5.62E-10	4.75E-11	3.60E-05	447.00
Sleepy Stack	5.62E-10	8.31E-11	3.60E-05	753.40
Sleep (dual Vth)	4.87E-10	6.39E-12	3.47E-05	445.50
ZigZag (dual Vth)	7.41E-10	2.61E-14	3.37E-05	447.00
Sleepy Stack (dual Vth)	7.41E-10	3.67E-12	3.37E-05	753.40
Berkeley 0.18µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (μ^2)
Base case	1.77E-10	2.23E-08	3.69E-05	301.60
Stack	5.50E-10	1.55E-09	3.06E-05	345.06
Sleep	2.39E-10	2.81E-09	3.06E-05	445.50
ZigZag	4.38E-10	1.49E-09	3.27E-05	447.00
Sleepy Stack	4.38E-10	2.63E-09	3.27E-05	753.40
Sleep (dual Vth)	3.36E-10	8.69E-12	3.16E-05	445.50
ZigZag (dual Vth)	5.76E-10	3.98E-13	3.04E-05	447.00
Sleepy Stack (dual Vth)	5.76E-10	3.42E-12	3.04E-05	753.40
1.7				
Berkeley () 13u	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	$\Delta rea (u^2)$
Base case	1 48F-10	1 84F-08	1 64E-05	173.05
Stack	4 71E-10	9.02E-10	1.04E 05	197.98
Sleen	2.07E-10	2 59E-09	1.36E-05	255.61
ZigZag	2.07E-10	1.48E-09	1.50E-05	255.01
Sleenv Stack	3.59E-10	1.48E-09	1.44E-05	432.27
Sleep (dual Vth)	2.87E-10	6.60E-12	1.40E-05	255.61
ZigZag (dual Vth)	4.86E-10	1.41E-12	1.40E 05	255.01
Sleenv Stack (dual Vth)	4.86E-10	2.61E-12	1.37E-05	432.27
Sheepy Stuck (dual vill)	LOOL TO	2.011 12	1.572.05	132.27
Darkalar 0.10u	Propagation datas (a)	Statia Dawar (W)	Dunamia Dawar (W)	$\Lambda reg (u^2)$
Berkeley 0.10µ	1 11E 10	Static Power (w)	1 O2E 05	Area (μ)
Stool	1.11E-10 2.51E-10	0.02E-00	1.02E-03	102.40
Slack	5.51E-10	2.16E-09	8.03E-00	117.13
ZiaZaa	1.3/E-10 2.70E-10	3.46E-09	8.59E-00	151.25
ZigZag Sloopy Stook	2.70E-10	3.10E-09	8.51E-00	255.78
Sleepy Stack Sleep (dual Vth)	2.70E-10	5.57E-09	8.51E-00 8.50E-06	255.76
ZigZog (dual Vth)	2.12E-10 2.50E-10	3.02E-12	8.30E-00	151.25
Sloopy Stools (dual VIII)	3.39E-10 2.50E-10	5.9/E-12	7.93E-00 7.05E-06	255 79
Sleepy Stack (dual vill)	5.59E-10	J.40E-12	7.93E-00	233.78
				2.
Berkeley 0.07µ	Propagation delay (s)	Static Power (W)	Dynamic Power (W)	Area (µ)
Base case	1.05E-10	1.72E-07	4.35E-06	50.17
Stack	3.39E-10	8.63E-09	3.43E-06	57.40
Sleep	1.56E-10	2.24E-08	3.66E-06	74.11
ZigZag	2.58E-10	1.41E-08	3.64E-06	74.36
Sleepy Stack	2.58E-10	1.51E-08	3.64E-06	125.33
Sleep (dual Vth)	2.35E-10	5.03E-12	3.73E-06	74.11
ZigZag (dual Vth)	3.97E-10	7.54E-12	3.43E-06	74.36
Sleepy Stack (dual Vth)	3.97E-10	8.19E-12	3.43E-06	125.33

Full Adder

Adder highlights of state saving approaches

- Static Power ٠
 - Stack approach (single Vth)
 - 0.18u: 2.96E-9 W
 - 0.07u: 9.25F-9 W
 - Sleepy Stack approach (dual Vth)
 - 0.18u: 3.51E-11 W (84x reduction)
 - 0.07u: 1.88E-11 W (492x reduction)
- Delay ٠
 - Stack approach (single Vth)
 - 0.18u: 1.50E-9s
 - 0.07u: 8.89E-10s
 - Sleepy Stack approach (dual Vth)
 - 0.18u: 1.63E-9s (8% slower)
 - 0.07u: 1.03E-9s (14% slower)
- Area ٠
 - Sleepy Stack approach requires 147% more area than the stack approach

Full Adder Results

Conclusions

Niche application

- Ultra-low static power
 - Up to 1000x lower than stack approach
 - Roughly same delay
 - +/- 50% of sleep and zigzag approaches
- High area
 - 72% 118% increase over stack approach
- Dual threshold processes
- State saving

Standard Cell library

- Composite simple gates
- Gates with 2 inputs optimal

