An Approach to Energy-Error Tradeoffs in Approximate **Ripple Carry Adders**

Zvi M. Kedem, Vincent J. Mooney, Kirthi Krishna Muntimadugu and Krishna V. Palem

Courant Institute of Mathematical Sciences, New York University, New York, USA, Email: kedem@nyu.edu

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA, Email: mooney@gatech.edu

School of Electrical & Electronic Engineering and School of Computer Engineering, Nanyang Technological University, Singapore, Email: vjmooney@ntu.edu.sg

Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA, Email: (kirthi.krishna, palem)@rice.edu

'NTU-Rice Institute of Sustainable and Applied InfoDynamics (ISAID), Nanyang Technological University, Singapore

Three Dimensions of Trade-Off

Inexact Circuits

Conventional Circuit Design

Approximate Arithmetic Circuits

Problem Statement

Given

Consider specific n-bit inputs A and B

- Define an indicator function as follows

For these specific inputs define a Boolean variable

 $C_{ij}(A,B) = \begin{cases} 1 & \text{if there is a carry chain from i to j} \\ 0 & \text{otherwise} \end{cases}$

- A circuit of an *n*-bit adder at the gate level
- Clock cycle time (T)
- Energy Consumption Budget (E)
- •Determine supply voltage for each gate in the adder • Based on value of information
- •To minimize the average error at the output of the adder for given clock cycle time (T)
- Such that the total energy consumption ≤ E

Error Model

Blased Voltage Supply (BIVOS) Versus Uniform Voltage Supply (UVOS)

Optimization Challenge Carry Chains and Approximate Adders

34.0 44.6 33.3 39.3 38.5 33.3

1.16 0.84 0.92 1.2 0.96 0.98 1.2

Binned voltages

specific voltages

n from a set of 4

Primary References

Approximate adder energy consumption $E^{A} = \sum_{l} \left(E_{l}^{D}(v_{l}) W_{l}^{A} + P_{l}^{S}(v_{l}) T \right)$ Corrected switching activity for gate "I'

Lakshimi N. B. Chakrapani, Kurni Krisnna, Lingarineni Kursuna, su K.V. Palem, S. Cheemalavagu, P. Korkmaz, and B.E.S. Akgul, "Pro -Zvi M. Kedem, Vincent John Mooney, Kirthi Krishna Muntimadugu,