
© 2004 Georgia Institute of Technology

Automated Bus Generation
for Multiprocessor SoC Design

Dissertation Defense
by

Kyeong Keol Ryu

Advisor: Vincent J. Mooney III

School of Electrical and Computer Engineering
Georgia Institute of Technology

June 2004

© 2004 Georgia Institute of Technology 2

Outline

Introduction
Related Work
Methodology for Bus System Generation
Experiments and Results
Conclusion

© 2004 Georgia Institute of Technology 3

Introduction – Goal

High Performance
Multi-processor SoC Design

High Performance
Multi-processor SoC Design

Other Approaches:
• Use standard SoC buses
and standard bus interfaces
as a generic approach

Our Approach:
• Use custom SoC buses
and custom bus interfaces

• Fast design space exploration

© 2004 Georgia Institute of Technology 4

Introduction – Motivation 1

Bus1

Bus2

Master1 Master2 Slave1

Slave2

Master3 Slave3

Bus
Bridge

Thread1 Thread2

Thread3

OFDM Transmitter

Thread1

Data input and
Symbol Mapping

Thread2
Inverse

Fast Fourier
Transform

(IFFT)

Thread3

Data output and
Cyclic extension

Software SoC Hardware

Hardware-software partitioning

© 2004 Georgia Institute of Technology 5

Introduction – Motivation 2
Automatic custom bus
generation for a
multiprocessor System-on-a-
Chip (SoC)

Easy and quick design of an SoC
bus system
Fast design space exploration
across performance influencing
factors
Development of a bus synthesis
tool (BusSynth)
Register-transfer level HDL output

Bus Synthesis Tool
(BusSynth)

Bus Synthesis Tool
(BusSynth)

User Options

© 2004 Georgia Institute of Technology 6

Outline
Introduction
Related Work

SoC Bus Architectures
SoC Bus Interfaces
SoC Bus System Design Tools
Additional prior work

Methodology for Bus System Generation
Experiments and Results
Conclusion

© 2004 Georgia Institute of Technology 7

SoC Bus Architectures
CoreConnect from IBM: PLB, OPB and DCR
Advanced Microcontroller Bus Architecture
(AMBA) from ARM: AHB, ASB and APB

CoreConnect AMBA

© 2004 Georgia Institute of Technology 8

SoC Bus Architectures (Continued)
CoreFrame from Palmchip: PalmBus and Mbus
Wishbone from Silicore: single bus type

CoreFrame Wishbone

© 2004 Georgia Institute of Technology 9

SiliconBackplane µNetwork from Sonics
Provision of fixed bandwidth by TDMA-based arbitration

Our Case:
Custom bus architectures from BusSynth: GBAVI, GBAVIII,
BFBA, HybridBA and SplitBA
More suitable for user applications and better performance

SoC Bus Architectures (Continued)

SiliconBackplane µNetwork

DMA CPU DSP MPEG

SRAM DRAM Input Output

Open Core
Protocol

Wrapper

© 2004 Georgia Institute of Technology 10

SoC Bus Interfaces

Open Core Protocol (OCP) from Sonics
Bus interface for IP cores
Reconfigurable interface
Five versions: basic OCP and its four extensions

Virtual Component Interface (VCI) from Virtual
Socket Interface Alliance (VSIA)

Basically a handshake protocol
A protocol for cycle-based point-to-point
communication
A data-orientated protocol (w/o the consideration of
interrupt control, and scan test issues)
Three versions : PVCI, BVCI and AVCI

© 2004 Georgia Institute of Technology 11

SoC Bus Interfaces (Continued)
Interface logic blocks (wrappers)

OCP and VCI: provision of a generic interface
Our case:

Custom wrappers: provision of a customized interface
to each specific IP block
Examples: MBI for a memory, CBI for a processing
element, and ABI for an arbiter
More suitable interfaces due to custom architecture
and lead to better system performance

© 2004 Georgia Institute of Technology 12

SoC Bus System Tools
CoWare N2C from CoWare

A design environment for an SoC
Bus generator and simulator to design a bus
architecture for an SoC

Platform Express from Mentor Graphics
An IP block and bus integration tool for an SoC
IP block assembling by dragging and dropping library
components
AMBA and CoreConnect

CoCentric System Studio from Synopsys
A SystemC simulator and specification environment
for HW architectures and SW algorithms
Bus architecture solutions: DesignWare AMBA IP
blocks and ARM processors

© 2004 Georgia Institute of Technology 13

Magillem from Prosilog
A tool for importing IPs and graphically creating SoCs
Supports:

Standard on-chip buses: AMBA and
CoreConnect
Standard bus interfaces: OCP and VCI

BusSynth
Generation of SoC bus systems with the standard
buses as well as customized buses.
Single bus architecture as well as multiple and hybrid
bus architectures: GBAVI, GBAVIII, BFBA, HybridBA
and SplitBA
Interconnect delay aware bus architecture generation

SoC Bus System Tools (Continued)

© 2004 Georgia Institute of Technology 14

Additional Prior Work
M. Gasteier et al. (’96), “Bus-Based Communication
Synthesis on System-Level”

Automatic generation of communication topologies on system-
level
A single global bus topology

R.A. Bergamaschi et al. (’00), “Designing Systems-on-Chip
using Cores”

Assembling an SoC using IP blocks and their properties
A single type of bus topology

TIMA lab. (’02): component-based design and wrapper
generation

Support: point-to-point connection and a shared bus
Shin et al. (’04), “Fast Exploration of Parameterized Bus
Architecture for Communication-Centric SoC Design”

A single type of bus topology
BusSynth

a variety of bus types including multiple and heterogeneous
type
Interconnect delay aware bus generation

© 2004 Georgia Institute of Technology 15

Additional Prior Work (Continued)

Pai Chou et al. (’99), “IPCHINOOK”: An
Integrated IP-based Design Framework for
Distributed Embedded Systems”

A component-based approach to SoC system building

BusSynth
various customized bus architectures by using user
options

© 2004 Georgia Institute of Technology 16

Outline
Introduction
Related Work
Methodology for Bus System
Generation

Overview
Bus System Structure
Bus System Generation
Bus System Examples
Interconnect Delay Aware Generation

Experiments and Results
Conclusion

© 2004 Georgia Institute of Technology 17

Methodology Overview
BusSynth

User options
Interconnect delay
estimation
Custom bus systems in
Register-Transfer Level
(RTL) HDL code

Bus systems
Hierarchical structure to
build an SoC bus system:
module, Bus Access Note
(BAN), bus subsystem and
bus system
Each layer is assembled in
a configurable manner

Bus Systems in
RTL HDL Code

BusSynth

Interconnect
Delay Estimation

User Options

© 2004 Georgia Institute of Technology 18

Bus System Structure – an example

CPU_B
L1

Memory

GBI SB1

CPU_A
L1

Memory

GBI SB1

Arbiter

Memory

SB1

GBI

GBI

SB2

SB2

CPU_J
L1

Memory

CPU_I
L1

Memory

Bus Subsystem 1 Bus Subsystem 2

Bus System

BB

BAN G

BAN A

BAN B BAN J

BAN I

BAN: Bus Access Node, IL: Interface Logic, SB: Segment of Bus, BB: Bus Bridge, MBI: Memory-Bus
Interface, CBI: CPU/PE-Bus Interface, GBI: Generic Bus Interface, ABI: Arbiter-Bus Interface,

IL3

IL3

IL2

IL4

IL4

ABI

MBI

GBI

CBI

MBI

CBI

MBI

IL1

CBI

MBI

CBI

MBI

IL2

IL2

IL2

© 2004 Georgia Institute of Technology 19

Bus System Generation

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

Bus Subsystem GenerationBus Subsystem Generation

For each Subsystem i

of Subsystem > 1

Y

N

Module
Library

© 2004 Georgia Institute of Technology 20

Bus System Generation

Module Library
PE: MPC750, MPC755,
MPC7410 and ARM9TDMI
[memory]_comp: SRAM and
DRAM
CBI_[PE]
MBI_[memory]
ABI
GBI_[bus_type]: GBAVI,
GBAVIII and BFBA
BB_[bb_type]: GBAVI and
SplitBA
ARB_[arb_type]: Priority and
Round Robin
SB_[bus_type]

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

Bus Subsystem GenerationBus Subsystem Generation

For each Subsystem i

of Subsystem > 1

Y

N

Module
Library

© 2004 Georgia Institute of Technology 21

Bus System Generation (Continued)
Wire Library

Format
%wire <library_name>;
w_name w_width m1_name m1_pname

m1_wmsb m1_wlsb m2_name m2_pname
m2_wmsb m2_wlsb;

%endwire;
An example:

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

Bus Subsystem GenerationBus Subsystem Generation

For each Subsystem i

of Subsystem > 1

Y

N

Module
Library

BAN1

w_addr[31:0]

addr_
pe[31:0]

addr_
cbi[31:0]

reset_b

MPC755

CBI_MPC755

%wire ban1;
w_addr 32 MPC755 addr_pe 31 0

CBI_MPC755 addr_cbi 31 0;
%endwire;

© 2004 Georgia Institute of Technology 22

Bus System Generation (Continued)
User input list

Bus System
Number of Bus Subsystems

Bus Subsystem (for each Bus Subsystem)
Number of buses
Number of BANs:

Bus Properties (for each bus)
Bus Type: GGBA, GBAVI, GBAVIII, BFBA,

HybridBA or SplitBA
address bus width
data bus width
Bi-FIFO depth for BFBA and HybridBA

BAN Properties (for each BAN)
CPU Type: MPC750, MPC755,

MPC7410 or ARM9TDMI
Non-CPU Type: DCT or MPEG2 decoder
Number of global memories
Number of local memories

Memory Properties
Type: SRAM, DRAM, DPRAM or FIFO
Address bus width
Data bus width

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

Bus Subsystem GenerationBus Subsystem Generation

For each Subsystem i

of Subsystem > 1

Y

N

Module
Library

© 2004 Georgia Institute of Technology 23

Bus System Generation (Continued)
Example: user input for SplitBA

1. Bus System: # of Bus Subsystems = 2
2. Bus Subsystem:
- Bus Subsystem1: # of buses = 1 and # of BANs = 3
- Bus Subsystem2: # of buses = 1 and # of BANs = 3

3. Bus Properties:
- Bus Subsystem1: GGBA, address bus width = 32 and Data bus width: 64
- Bus Subsystem2: GGBA, address bus width = 32 and data bus width: 64

4. BAN Properties:
For Bus Subsystem1
- BAN1: CPU Type = MPC755, non-CPU Type = None,

of global memories = 0 and # of local memories = 0
- BAN2: CPU Type = MPC755, non-CPU Type = None,

of global memories = 0 and # of local memories = 0
- BAN3: CPU Type = None , non-CPU Type = None,

of global memories = 1 and # of local memories = 0
For Bus Subsystem2
- BAN4: CPU Type = MPC755 , non-CPU Type = None ,

of global memories = 0 and # of local memories = 0
- BAN5: CPU Type = MPC755 , non-CPU Type = None ,

of global memories = 0 and # of local memories = 0
- BAN6: CPU Type = None , non-CPU Type = None,

of global memories = 1 and # of local memories = 0
5. Memory Properties:

- BAN3: Type = SRAM, address bus width = 21 and data bus width = 64
- BAN6: Type = SRAM, address bus width = 21 and data bus width = 64

SplitBA

© 2004 Georgia Institute of Technology 24

Bus System Generation (Continued)
Bus Subsystem Generation

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

BAN IntegrationBAN Integration

For each Subsystem i

of Subsystem > 1

Y

N

Module
Library

For module k in MNA for BAN j

Look up module k name in Module Library ML
and extract or generate the corresponding

RTL code for each module k

For i = 1 to N, i =i +1

Call UnitGen (MNA, “ban_i_j”, WL)

Call UnitGen (BN, “bus_subsystem_i”, WL)

For BAN j in BAN name array BN for a Subsystem i

BusSubSys (module_name_array MNA,
ban_name_array BN, subsys_no N,
wire_library WL, module_library ML)

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

BAN IntegrationBAN Integration

© 2004 Georgia Institute of Technology 25

Bus Subsystem2

BAN6

BAN5BAN4BAN2

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

Bus Subsystem GenerationBus Subsystem Generation

For each Subsystem 1

of Subsystem > 1

Y

N

Module
Library

Bus Subsystem 1 GenerationBus Subsystem 1 Generation

Bus System GenerationBus System GenerationBus System GenerationBus System Generation

MPC755MPC755

CBI_
MPC755

CBI_
MPC755 CBI_

MPC755

CBI_
MPC755

MPC755MPC755 MPC755MPC755

CBI_
MPC755

CBI_
MPC755 CBI_

MPC755

CBI_
MPC755

SRAMSRAM

ArbiterArbiter MBI_
SRAM

MBI_
SRAM

MPC755MPC755

BAN1

BAN3

Bus Subsystem1
User Option InputUser Option InputUser Option InputUser Option Input

Bus Access Node 1 (BAN1)
Generation

Bus Access Node 1 (BAN1)
Generation

Bus Subsystem 1 GenerationBus Subsystem 1 GenerationBus Subsystem 1 GenerationBus Subsystem 1 Generation

For each Subsystem 2

Bus Access Node 2 (BAN2)
Generation

Bus Access Node 2 (BAN2)
GenerationBus Access Node 3 (BAN3)
Generation

Bus Access Node 3 (BAN3)
GenerationBus Access Node 3 (BAN3)
Generation

Bus Access Node 3 (BAN3)
GenerationBus Access Node 4 (BAN4)
Generation

Bus Access Node 4 (BAN4)
GenerationBus Access Node 5 (BAN5)
Generation

Bus Access Node 5 (BAN5)
GenerationBus Access Node 6 (BAN6)
Generation

Bus Access Node 6 (BAN6)
GenerationBus Access Node 6 (BAN6)
Generation

Bus Access Node 6 (BAN6)
Generation

Bus Subsystem 2 GenerationBus Subsystem 2 Generation

of Subsystem > 1# of Subsystem > 1

Bus System GenerationBus System Generation

SRAMSRAM

ArbiterArbiter MBI_
SRAM

MBI_
SRAM

Bus System GenerationBus System Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Example: the generation of Bus Subsystems for SplitBA

Bus System Generation (Continued)

© 2004 Georgia Institute of Technology 26

Bus System Generation (Continued)
Unit generation

Read wires from W for modules in M and save them to LW1

3. For wire k in LW1

info in LP1 matches info in LW1

2. For port j in LP1

Read ports from module i and save them to LP1

1. For each module i in module name array M

Y

Write HDL code for a module to U
using LW1, LP2 and LWPM

Add port j info to LP2

flag = FALSE

Y

UnitGen (module_name_array M, top_unit_name U, wire_library W)
Read wires from W for modules in M and save them to LW1

Read ports from module i and save them to LP1

info in LP1 matches info in LW1

flag = FALSE

Add port j info to LP2

Write HDL code for a module to U
using LW1, LP2 and LWPM

BAN1

w_addr[31:0]

addr_
pe[31:0]

addr_
cbi[31:0]

reset_breset_b

MPC755

CBI_MPC755

w_addr 32 MPC755 addr_pe 31 0 CBI_MPC755 addr_cbi 31 0;

LW1

MPC755 addr_pe output 31 0;
MPC755 reset_b input 0 0;

LP1 for MPC755

CBI_MPC755 addr_cbi input 31 0;

LP1 for CBI_MPC755

w_addr MPC755 addr_pe 31 0;
LWPM

MPC755 reset_b input 0 0;

LP2

module BAN1(reset_b, .…); // “….” : skipped
input reset_b; // from LP2
….
wire w_addr[31:0]; // from LWPM
….
MPC755 MPC755_0(

.reset_b(reset_b), // from LWPM

.addr_pe(w_addr[31:0]), // from LWPM
….

);
CBI_MPC755 CBI_MPC755_0(

.addr_cbi(w_addr[31:0]), // from LWPM
….

);
endmodule;

HDL code

module_name_array = {“MPC755”, “CBI_MPC755”}
top_unit_name = “BAN1”

w_addr 32 MPC755 addr_pe 31 0 CBI_MPC755 addr_cbi 31 0;

MPC755 addr_pe output 31 0;
MPC755 reset_b input 0 0;

w_addr MPC755 addr_pe 31 0;
w_addr CBI_MPC755 addr_cbi 31 0;

MPC755 addr_pe output 31 0;
MPC755 reset_b input 0 0;
MPC755 addr_pe output 31 0;
MPC755 reset_b input 0 0;

w_addr MPC755 addr_pe 31 0;
w_addr CBI_MPC755 addr_cbi 31 0;

CBI_MPC755 addr_cbi input 31 0;flag = FALSE

N

flag = TRUE

N

Save wire k and its connection info to LWPMSave wire k and its connection info to LWPM

© 2004 Georgia Institute of Technology 27

Bus System Generation (Continued)

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

Bus Subsystem GenerationBus Subsystem Generation

For each Subsystem i

of Subsystem > 1

Y

N

Module
Library

Bus System Generation

Bus Subsystem GenerationBus Subsystem Generation

Bus System GenerationBus System Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Look up module i name in Module Library ML
and extract or generate the corresponding

RTL code for the module i

For module i in bus bridge name array MS

Call UnitGen ({SS, MS}, “bus_system”, WL)

BusSys (subsystem_name_array SS,
bus_bridge_name_array MS,
wire_library WL, Module_library ML)

of Subsystem > 1

© 2004 Georgia Institute of Technology 28

Bus Subsystem2

BAN6

BAN5BAN4BAN2

Bus Access Node (BAN)
Generation

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Wire
Library Bus System GenerationBus System Generation

User Option InputUser Option Input

BusSynth

Bus Subsystem GenerationBus Subsystem Generation

For each Subsystem 1

of Subsystem > 1

Y

N

Module
Library

Bus Subsystem 1 GenerationBus Subsystem 1 Generation

Bus System GenerationBus System GenerationBus System GenerationBus System Generation

MPC755MPC755

CBI_
MPC755

CBI_
MPC755 CBI_

MPC755

CBI_
MPC755

MPC755MPC755

BB_
SplitBA

BB_
SplitBA

MPC755MPC755

CBI_
MPC755

CBI_
MPC755 CBI_

MPC755

CBI_
MPC755

SRAMSRAM

ArbiterArbiter MBI_
SRAM

MBI_
SRAM

MPC755MPC755

BAN1

BAN3

Bus Subsystem1

Bus System

Bus Access Node 1 (BAN1)
Generation

Bus Access Node 1 (BAN1)
Generation

Bus Subsystem 1 GenerationBus Subsystem 1 GenerationBus Subsystem 1 GenerationBus Subsystem 1 Generation

For each Subsystem 2

Bus Access Node 2 (BAN2)
Generation

Bus Access Node 2 (BAN2)
GenerationBus Access Node 3 (BAN3)
Generation

Bus Access Node 3 (BAN3)
GenerationBus Access Node 3 (BAN3)
Generation

Bus Access Node 3 (BAN3)
GenerationBus Access Node 4 (BAN4)
Generation

Bus Access Node 4 (BAN4)
GenerationBus Access Node 5 (BAN5)
Generation

Bus Access Node 5 (BAN5)
GenerationBus Access Node 6 (BAN6)
Generation

Bus Access Node 6 (BAN6)
GenerationBus Access Node 6 (BAN6)
Generation

Bus Access Node 6 (BAN6)
Generation

Bus Subsystem 2 GenerationBus Subsystem 2 GenerationBus Subsystem 2 GenerationBus Subsystem 2 Generation

of Subsystem > 1# of Subsystem > 1

Bus System GenerationBus System Generation

SRAMSRAM

ArbiterArbiter MBI_
SRAM

MBI_
SRAM

Bus System GenerationBus System Generation

Synthesizable
Verilog HDL code
Synthesizable

Verilog HDL code

Bus System Generation (Continued)
Example: the generation of a Bus System (SplitBA)

// Skipped
.up_dataout(dataout_up_2[FIFO_D_WIDTH-1:0]),
.up_gen_int(gen_int_up_2),
.up_isr0_ctlhi(isr0_ctlhi_up_2),
.up_isr0_ctllo(isr0_ctllo_up_2),
.dn_datain(datain_up_3[FIFO_D_WIDTH-1:0]),
.reb_dn(reb_up_3),
.web_dn(web_up_3),
.fifo_area_dn(fifo_area_up_3)

);
endmodule

module BusSystem(sysrstb, sysclk);
input sysrstb;
input sysclk;
// Skipped

SubSys1_splitBA SubSystem1(
.sysrstb(sysrstb),
.sysclk(sysclk)
// Skipped

);

SubSys2_splitBA SubSystem2(
.sysrstb(sysrstb),
.sysclk(sysclk)
// Skipped

);

Bus_bridge bb1(
// Skipped
);

endmodule

© 2004 Georgia Institute of Technology 29

Bus System Examples

General Global Bus
Architecture Version I (GBAVI)

Bi-FIFO Bus
Architecture (BFBA)

© 2004 Georgia Institute of Technology 30

Bus System Examples (Continued)

Hybrid Bus Architecture
(HybridBA)

General Global Bus
Architecture Version III (GBAVIII)

© 2004 Georgia Institute of Technology 31

Bus System Examples (Continued)

Split Bus Architecture (SplitBA)

© 2004 Georgia Institute of Technology 32

Bus System Examples (Continued)

CoreConnect Bus
Architecture (CCBA)

General Global Bus
Architecture (GGBA)

© 2004 Georgia Institute of Technology 33

A New Bus System Generation
Different Combination of Bus Components

Different combination of BAN components

Different combination of BANs

SRAM MBI SB

BAN4

MPC
755 CBI SB

BAN2

MPEG2
Decoder NCBI SB

BAN3

MPC
755 CBI

SB

BAN1

GBI

SRAM MBI

BAN1 BAN2 BAN3

Bus Subsystem1

BAN4 BAN1 BAN2 BAN2

Bus Subsystem2

BAN2 BAN1 BAN3 BAN4

Bus Subsystem3

BAN4

Note: BAN: Bus Access Node, MBI: Memory Bus Interface, CBI: CPU Bus Interface, GBI: Generic Bus Interface,
SB: Segment of Bus, NCBI: Non-CPU Bus Interface

User Inputs for BAN1:
CPU type: MPC755
Non-CPU type: None
of global memories: 0
of local memories: 1

Memory type: SRAM

User Inputs for BAN2:
CPU type: MPC755
Non-CPU type: None
of global memories: 0
of local memories: 0 User Inputs for Bus Subsystem2:

of BANs: 4
BANs 1, 2, 2 and 2

User Inputs for Bus Subsystem1:
of BANs: 4

BANs 1, 2, 3 and 4

© 2004 Georgia Institute of Technology 34

A New Bus System Generation
(Continued)

Different Combination of Bus Components
Different combination of Bus Subsystems

Bus Subsystem1

Bus Subsystem2 Bus Subsystem3

BB1 BB2

BB3

Bus Subsystem1 Bus Subsystem2BB1

Note: BB: Bus Bridge

Bus System1 Bus System2

User Inputs for Bus System1:
of Bus Subsystems: 3

Bus Subsystems 1, 2, 3

User Inputs for Bus System2:
of Bus Subsystems: 2

Bus Subsystems 1 and 2

© 2004 Georgia Institute of Technology 35

Interconnect Delay Aware Bus System
Generation
Interconnect delay estimation (e.g., GGBA)

MPC755
PE3

SRAMSRAM

MPC755
PE1

MPC755
PE 2

MPC755
PE4

Memory Bus
Interface (MBI)
Bus Arbitrer

Bus Interconnect
Legend

CPU Bus Interface
(CBI)

(b) Interconnect length estimation(a) Estimated Floorplan of GGBA

• HSPICE wire model includes:
- RLC parameters from MOSIS
run for TSMC 0.25 um

- Interconnect length
• Interconnect delay calculation

© 2004 Georgia Institute of Technology 36

Interconnect Delay Aware Bus System
Generation (Continued)

Memory Bus Interface (MBI) module generation
One of effects in interconnect delay insertion: memory
access cycles
Memory controller to adapt access cycles due to
interconnect delay

PowerPCs
MBI

(delay
info)

SRAM

aack_bars

ta_bars

address

data
control signals

sram_ data

cs_bar
we_bar

sram address

re_bar

© 2004 Georgia Institute of Technology 37

Interconnect Delay Aware Bus System
Generation (Continued)

Memory Bus Interface (MBI) module generation

(a) Estimated total delay of paths between each PE and a shared memory

(b) Number of clock delays in data paths

© 2004 Georgia Institute of Technology 38

Interconnect Delay Aware Bus System
Generation (Continued)
Memory Bus Interface (MBI) module generation

(a) Sequence of MBI Generation (b) Bus System Generation

Bus Access Node (BAN) Generation

Synthesizable
Verilog HDL code

Wire
Library Bus System Generation

BusSynth

Bus Subsystem Generation

For each Bus Subsystem

of Subsystem > 1

Y

N

Module
Library

For each BAN

Module Generation

User Option Input

Input of
interconnect delays

Calculation of the number
of clocks to be inserted

Extraction of MBI module
from Module Library

Update of memory access
delay parameters
in an MBI module

© 2004 Georgia Institute of Technology 39

Outline
Introduction
Related Work
Methodology for Bus System Generation
Experiments and Results

Application Examples
Experimental Setup
Performance Evaluation
Generation Time and Logic Area

Conclusion

© 2004 Georgia Institute of Technology 40

Application Examples

OFDM transmitter
Wireless application
One packet: (2048+512)-complex samples

MPEG2 decoder
A video stream decoder

Database example
Multitask clients and server over PEs: total
41 tasks over four PEs
RTOS: Atalanta version 0.4

© 2004 Georgia Institute of Technology 41

Experimental Setup

INPUT

LIBRARIES

SYNTHESIZABLE
VERILOG HDL

CODE

User options

BusSynth

VCS SEAMLESS
CVE

XRAY

GCC USER
C-CODE

BUS GENERATION TOOL SIMULATION ENVIRONMENT

SYNTHESIS ENVIRONMENT

DESIGN
COMPILER

Note: VCS and Design Compiler from Synopsys, Seamless CVE and Xray from Mentor Graphics and GCC from
GNU

Interconnect
Delay Estimation

Interconnect
Delay Estimation

Floorplan
Design

Floorplan
Design

© 2004 Georgia Institute of Technology 42

Software Programming Style

EA

B

C

D

Time

BAN

…..F

E

F

E

G

F

E

G

H

G

H

F

G

H H

A

B

C

D

Time

BAN

…..

EFGH

(a) Pipelined Parallel Algorithm (PPA) (b) Functional Parallel Algorithm (FPA)

EFGH

EFGH

EFGH

EFGH

EFGH

EFGH

EFGH

Note: Each of E, F, G and H specifies a function group partitioned from a software

© 2004 Georgia Institute of Technology 43

Performance Evaluation
OFDM Transmitter

SplitBA and GBAVIII outperform GGBA by
16.44% and 13%, respectively.
Pipelined parallel algorithm (PPA) and functional
parallel algorithm (FPA)

© 2004 Georgia Institute of Technology 44

Performance Evaluation (Continued)
MPEG2 Decoder

HybridBA shows the best in performance (15.54%
against CCBA)

Database Example
SplitBA outperforms GGBA by 41% reduction in time

© 2004 Georgia Institute of Technology 45

Three configurations of GGBA for
performance comparison

Performance Evaluation
- Interconnect Delay Aware Generation

GGBA I is a GGBA system with no regard to
interconnect delay on the bus

Used as a baseline of performance comparison
GGBA II is a GGBA system that works with
different estimated interconnect delays on the
shared bus
GGBA III is a GGBA system that operates with
a maximum estimated delay on all connections
between PEs and a shared memory

© 2004 Georgia Institute of Technology 46

Performance Evaluation (Continued)
- Interconnect Delay Aware Generation

(a) 300MHz Bus Clock

(b) 200MHz Bus Clock

(c) 100MHz Bus Clock

© 2004 Georgia Institute of Technology 47

Generation Time and Logic Area (no wires)

Bus system generation with BusSynth
Design Compiler with LEDA TSMC
0.25µm standard cell library

© 2004 Georgia Institute of Technology 48

Conclusions
SoC bus system design aid

Expert guide to design an SoC bus system
Automated bus generation tool: BusSynth

Solution: how to easily and quickly design a multi-processor
SoC bus system
User option based tool that generates diverse custom bus
systems
Synthesizable Verilog HDL output

Interconnect delay aware bus system generation
A case study of an SoC design in a component-based
design approach
Fast design space exploration across performance
influencing factors

Generation of bus systems in a matter of seconds
Practical implementation

RTL-level HDL output from BusSynth
Realistic user application: OFDM and MPEG2
Real-time operating system

© 2004 Georgia Institute of Technology 49

Publications
K. Ryu and V. Mooney, “Automated Bus Generation for Multiprocessor SoC
Design,” to appear in IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems (TCAD’04), 2004.

K. Ryu, A. Talpasanu, V. Mooney and J. Davis, “Interconnect Delay Aware
RTL Verilog Bus Architecture Generation for an SoC,” to appear in Proceeding
of IEEE Asia-Pacific Conference on Advanced System Integrated Circuits (AP-
ASIC’04), August 2004.

K. Ryu and V. Mooney, “Automated Bus Generation for Multiprocessor SoC
Design,” in Proceedings of the Design, Automation and Test in Europe
(DATE'03), pp. 282-287, March 2003.

K. Ryu and V. Mooney, “Automated Bus Generation for Multiprocessor SoC
Design,” [Online]. Available: http://www.cc.gatech.edu/tech_reports, Georgia
Institute of Technology, Atlanta, GA, Technical Report GIT-CC-02-64,
December 2002.

K. Ryu, E. Shin and V. Mooney, "A Comparison of Five Different
Multiprocessor SoC Bus Architectures," in Proceedings of the EUROMICRO
Symposium on Digital Systems Design (EUROMICRO'01), pp. 202-209,
September 2001.

J. Lee, K. Ryu and V. Mooney, "A Framework for Automatic Generation of
Configuration Files for a Custom Hardware/Software RTOS," in Proceedings
of the International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA'02), pp. 31-37, June 2002.

© 2004 Georgia Institute of Technology 50

Poster Presentation and Demonstration

K. Ryu and V. Mooney, “Automated Bus
Generation for Multiprocessor SoC design,” Ph.D.
Forum at the 40th Design Automation Conference
(DAC’03), June 2003.
K. Ryu, E. Shin, J. Lee and V. Mooney, “A
Framework for Automatic Generation of Bus
Systems and a Hw/Sw RTOS for Multiprocessor
SoC,” University Booth at the 39th Design
Automation Conference (DAC’02), June 2002.

© 2004 Georgia Institute of Technology 51

Thank you

