

A Comparison of Five Different Multiprocessor SoC Bus Architectures

Kyeong Keol Ryu, Eung Shin and Vincent J. Mooney III School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, USA {kkryu, eung, mooney}@ece.gatech.edu

Outline

- Introduction
- Motivation and Previous Work
- Five Bus Architectures for SoC:
 BFBA, GBIA, GBIIA, CSBA, and CCBA
- Application Examples:
 - OFDM transmitter and MPEG2 decoder
- Experiment Environment
- Comparison in View of Algorithm and Architecture
- Comparison of Throughput of the Bus Architectures
- Conclusion

Introduction

Motivation and Previous Work (I)

CoreConnect (IBM): Processor Local Bus (PLB) On-chip Peripheral Bus (OPB)

Intellectual Property (IP)

AMBA (ARM): Advanced High-performance Bus (AHB) Advanced Peripheral Bus (APB)

Motivation and Previous Work (II)

- Sonics uNetwork
 - TDMA arbitration
 - IP reuse and integration
- Whisbone architecture (Silicore)
 - one bus for all
 - supports multiple masters
- In terms of bus topology, uNetwork and Whisbone are similar to AMBA and CoreConnect

Five Bus Architectures for 4 processor System (I)

• Bi-FIFO Bus Architecture (BFBA)

• Global Bus I Architecture (GBIA)

Five Bus Architectures for 4 processor System (II)

Global Bus II Architecture (GBIIA) o Cross

Application Examples (I)

- OFDM Transmitter
 - Block Diagram

- Data Format: 32 guard samples and 128 data samples
- Function Assignment

Compute Node	Assigned Functions	Compute Node	≜							
	Initialization (channel parameter, etc) Train Pulse Generation	Pro_A	A1	A2	A3	A4]	_		
А	Symbol Generation Data Generation & Symbol Mapping Bit Bound for language SET	Pro_B		B1	B2	B3	B4		•••	••
В	Bit Reversal for Inverse FFT	Pro_C			C1	C2	C3	C4		
C	Normalizing IFFT	Pro_D				D1	D2	D3	D4	
U	Insertion of Guard Signal					1	1	1	Time	->

Reference: D. Kim and G. L. Stüber, "Performance of Multiresolution OFDM on Frequency-selective Fading Channels," IEEE Transaction on Vehicular Technology, vol. 48, no. 5, pp. 1740-1746, September 1999.

Application Examples (II)

- MPEG2 Decoder
 - Video Processing Example
 - 16 x 16 pixel resolution, M=1, N=2

SH: Sequence header, I: Intra decoding frame, P: Predictive decoding frame

Experiment Environment

Co-simulation Environment

- Seamless CVE
 - co-simulator from Mentor Graphics
- VCS
 - A Verilog HDL simulator from Synopsys
- XRAY
 - A High-level debugger from Mentor Graphics
- PowerPC C cross compiler
 - GCC
- External Clock of PowerPC 750
 - 83.33 MHz (the internal clock speed can be much faster, e.g., 400MHz)

Comparison in View of Algorithm and Architecture

Algorithm

- OFDM Transmitter
 - Strong output-data dependency between functions using many local variables
 - Many short loops
 - Few global variables
- MPEG2 Decoder
 - Many global variables for header information
 - Hierarchical data structure which has a long loop with many nested loops

Architecture

- BFBA and GBIA
 - No method to access global data
 - Fast data transfer between processor blocks
- GBIIA, CSBA, and CCBA
 - Efficient access of global data

Comparison of Throughput of the Bus Architectures (I)

OFDM Transmitter

Bus Architecture	Exe. Cycles/Packet	Exe. Time/Packet	Throughput		
BFBA	378,348	4.5402 ms	1.1277Mbps		
GBIA	403,000	4.8360 ms	1.0588Mbps		
GBIIA	381,061	4.5727 ms	1.1197Mbps		
CSBA	380,199	4.5624 ms	1.1222Mbps		
ССВА	380,686	4.5682 ms	1.1208Mbps		

[Mbps] 1.14 1.12 1.14 1.12 1.14 1.12 1.14 1.08 1.06 1.04 1.04 1.02

Reference: 128 data samples and 32 guard samples per packet

Comparison of Throughput of the Bus Architectures (II)

MPEG2 Decoder

Bus Architecture	Exe. Cycles/Packet	Exe. Time/Packet	Throughput		
BFBA	507,853	6.0942 ms	0.5041Mbps		
GBIA	527,545	6.3305 ms	0.4852Mbps		
GBIIA	377,562	4.5307 ms	0.6780Mbps		
CSBA	377,548	4.5306 ms	0.6781Mbps		
ССВА	378,181	4.5382 ms	0.6769Mbps		

[Mbps]

Reference: 128 data samples and 32 guard samples per packet

Conclusion

- Five bus architectures evaluated
 - BFBA, GBIA, GBIIA, CSBA, and CCBA
- Two application programs
 - OFDM transmitter and MPEG2 decoder
- Pipeline or parallel operation improves performance
- BFBA best for OFDM
 - pipelined applications
- CSBA best for MPEG2
 - parallel applications
- bus architecture performance heavily dependent on
 - distribution of computation load
 - algorithm style
- Future work: combine the bus architectures with switching logic to maximize performance according to application characteristics

