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Abstract— A methodology has been proposed re-

cently to predict error-rates of probabilistic circuits

having a cascade structure. It was able to predict rea-

sonably accurately for probabilistic ripple-carry and

carry-skip adders. The objective of the present pa-

per is twofold. First, the methodology is applied, for

the first time in the literature, to a probabilistic carry-

select adder, which has a more complex structure than

the adders mentioned above. This is to provide addi-

tional evidence that the method is versatile and appli-

cable to some non-trivial circuits. Second, the present

paper shows that the methodology is also applicable

to some seemingly non-cascade circuits. The key tech-

nique is to appropriately group circuit components

into various blocks before applying the methodology.

Such a preprocessing may potentially widen the scope

of applicability of the methodology.

I. Introduction

As the feature size of CMOS continues to shrink, CMOS
circuits become increasingly susceptible to various kinds
of errors, failures, and process-induced variations. In-
stead of spending disproportionate efforts to avoid errors
completely, probabilistic computing proposes to embrace
occasional errors caused by erroneous chips [1]. Mani-
fested in probabilistic computing are potential trade-offs
between correctness of circuit operation and design pa-
rameters. A good trade-off can possibly result in signifi-
cant power savings [2, 3] or increased circuit speeds [4].

For systematic design, performance evaluation, and re-
source allocation of probabilistic circuits, accurate predic-
tion of error-rates is essential. A method was proposed in
[5] to predict error-rates of probabilistic circuits that are
cascades of some circuit blocks as shown in Fig. 1. Such a
cascade structure can be found in, for examples, various
adder circuits such as ripple-carry and carry-skip (CSAs)
adders. In [5] the method was used to predict error-rates
of a probabilistic CSA. The predicted error-rates were rea-
sonably close to that obtained from HSPICE simulations.

A contribution of the present paper is to apply the
method of [5] to a more complex circuit, namely, a proba-
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Fig. 1. A cascade circuit to which the method of [5] is applicable.

D

E

C

B

A...

...D

E

E

C

B

A...

...
D

C

B

A...

...

x

y
x

y

x

y

z

z

z

x
y

Sub-circuit 1

Sub-circuit 2

Sub-circuit 3

Block 2Block 1 Block 3

(a) (b) (c)

Fig. 2. Transforming converging fan-outs into a cascade structure.

bilistic carry-select adder (PCSLA). The PCSLA has two
multi-bit ripple-carry adders working in parallel, and has
a more complex circuit structure (e.g., converging fan-
outs) than the CSA studied in [5]. The results shown in
the present paper can provide additional evidence that the
method is versatile and applicable to non-trivial circuits.

In a recent study, we observed that some circuits of a
directed-acyclic-graph structure can be re-configured into
the same cascade structure as Fig. 1. It was done by
properly grouping circuit components into blocks. We
have seen in our study that this technique works for a
Wallace tree multiplier. Motivated by the study, as the
second contribution of the present paper, we suggest that
the method of [5] is also applicable to some circuits with
seemingly non-cascade structures; the key is a prepro-
cessing step that can reconfigure components of a target
circuit into blocks properly.

An example is shown in Fig. 2 (a), where the error-rate
of z is to be determined. At first, it seems that this circuit
does not have a cascade structure because there are two
fan-out signals converging at E. One may be tempted to



decompose the circuit into three cascade sub-circuits, as
shown in Fig. 2 (b). The method of [5] is then applied to
sub-circuits 1 and 2 separately to obtain probabilities of
x and y, denoted as px and py. If x and y are statistically
independent, a joint probability of x and y is simply the
product pxpy. Having this joint probability, one can apply
the method of [5] again to sub-circuit 3 to obtain the error-
rate of z.

However, this technique may fail when x and y are cor-
related. Unless the correlation is known in advance, there
may be insufficient information to estimate a joint proba-
bility of x and y since px and py were estimated separately.

This is now tackled by appropriately re-grouping the
components into blocks, i.e., preprocessing, before apply-
ing the method. We group A and B as a block, C and
D as a block, while E itself is another block, as shown
in Fig. 2 (c). It is now clear that Fig. 2 (c) exhibits the
same cascade structure as Fig. 1, and thus the method
of [5] can be applied. Joint probabilities of x and y are
now given directly by the method since they are outputs
from the same block. Similar ideas were used for another
error-rate predicting method in [6].

In view of this example, we are able to apply the method
of [5] to circuits having cascade as well as some seemingly
non-cascade structures. This technique is demonstrated
in the present paper with a PCSLA as an example.

II. Carry-select Adders

We consider a carry-select adder (CSLA) which is a
cascade of several identical multi-bit adders, as depicted
in Fig. 3 (a). The internal structure of the ith multi-bit
adder is shown in Fig. 4. For a detailed discussion of
CSLAs, see for example pg. 192 of [7] and pg. 575 of [8].

The multi-bit adder shown in Fig. 4 accepts a carry-
in ci,1 and two segments of addend bits. The addend
segments are added, and the resulting carry-out ci+1,1

will serve as the carry-in of the next multi-bit adder.
Before a carry-in ci,1 arrives, the multi-bit adder per-

forms major amount of work required by the addition.
The multi-bit adder performs the addition twice with two
possible carry-in values (VSS and VDD); the additions are
performed in parallel by two ripple-carry adders. Once an
actual carry-in has arrived, the multiplexers (MUXes) will
select the correct addition result based on the value of the
actual carry-in. Then, the correct addition result will be
ready for output almost instantly.

We decompose a CSLA in two different ways. The first
way, which is perhaps more obvious, is to view a CSLA
as a cascade of multi-bit adders, as shown in Fig. 3 (a).
The CSLA then exhibits the same cascade structure of
Fig. 1. We are allowed to apply the method of [5] directly,
considering each multi-bit adder as a single block. This is
a straightforward way of decomposing a CSLA. However,
the method becomes less efficient for a block of a long
bit-length [5], as the complexity of characterizing a block
grows rapidly with its number of inputs/outputs.
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Fig. 3. Two representations of the same CSLA.
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Fig. 5. The multi-bit adder of Fig. 4 is a cascade of three types of
primitive blocks.

Such a scalability issue can be alleviated by further di-
viding a multi-bit adder into a cascade of sub-circuits,
where each sub-circuit has only a small number of in-
puts/outputs. The multi-bit adder of Fig. 4, however,
has no apparent cascade structure if we assign each full-
adder (FA) or multiplexer (MUX) an individual block. It
is then not clear how the multi-bit adder of Fig. 4 can be
sub-divided into a cascade of smaller blocks.

In this paper, we observe that a cascade structure would
immediately emerge if we group the FAs and MUXes into
three types of blocks, as shown in Fig. 5. This results in
another cascade representation of a CSLA, as depicted in
Fig. 3 (b). This cascade structure can be handled by the
method of [5]. The above-mentioned scalability issue does



not exist any more. This is because each block of Fig. 5
corresponds to no more than a single bit of a CSLA, and
hence the number of inputs/outputs of a block does not
grow with the bit-length of a multi-bit adder.

The above discussions illustrate that, by appropriately
grouping circuit components into blocks, circuits of seem-
ingly non-cascade structure (e.g., the multi-bit adder of
Fig. 4) can also be partitioned to form a cascade structure
that can be handled by the method of [5].

III. A Framework for Error-rate Prediction

In this section, we briefly present the method of [5] and
the associated equations for error-rate prediction. Dis-
cussions here are self-contained, and can be understood
without referring to the original paper [5].

The method deals with a cascade of N circuit blocks
shown in Fig. 1. Block i has mi + qi inputs and ni + qi+1

outputs; the inputs (ci,1, . . . , ci,qi
) and (ai,1, . . . , ai,mi

) are
statistically independent. Internal structures of the cir-
cuit blocks need not to be specified in advance, and there
are no strong assumptions imposed.

A. Notation and Mathematical Model

We use the notation shown in Fig. 1. The first subscript
refers to the block number and the second subscript refers
to the bit position within a block. We shall sometimes use
vector notation, which is denoted by bold symbols such
as ai and ci. The definitions of some symbols are given in
Table I for the ease of reference. With vector notation, we
present the ith block in a compact manner in Fig. 6 (a).

We introduce two functions, f c
ij and fs

ij , that model the
input-output relations of the block in Fig. 6 (a). Namely,

ci+1,j = f c
ij(ci, ai), sij = fs

ij(ci, ai).

We also write in vector forms:

ci+1 = (ci+1,1, ci+1,2, . . . , ci+1,qi+1
)

= fc
i (ci, ai)

def

=
(

f c
i,1(ci, ai), . . . , f

c
i,qi+1

(ci, ai)
)

,

si = (si,1, si,2, . . . , si,ni
)

= fs
i (ci, ai)

def

=
(

fs
i,1(ci, ai), . . . , f

s
i,ni

(ci, ai)
)

.

Figure 6 (b) shows a probabilistic block with inputs and
outputs c′i, c′i+1, ai and s′

i. We assume that Figs. 6 (a)
and (b) have the same input ai. Hence, the probabilistic
block’s input a is always correct. However, ci and c′i may
be different, and we use a prime to indicate the distinc-
tion. The prime notation here does not denote comple-
mentation, and hence variables such as c′i and ci are in
general completely distinct.

Assume that errors at the outputs of a probabilistic
block are caused by some inherent error sources. The er-
ror sources cause an error and subsequently flip an output
bit. Variables ec

ij and es
ij were introduced in [5] such that

c′i+1,j = ec
ij ⊕ f c

ij(c
′

i, ai), s′i,j = es
ij ⊕ fs

ij(c
′

i, ai).

TABLE I
Mathematical symbols for the ith block.

Types Symbols for the ith block

Input ai = (ai,1, ai,2, . . . , ai,mi
)

Input ci = (ci,1, ci,2, . . . , ci,qi
)

Output ci+1 = (ci+1,1, . . . , ci+1,qi+1
)

Probabilistic input c′

i = (c′i,1, c
′

i,2, . . . , c
′

i,qi
)

Probabilistic output c′

i+1 = (c′i+1,1, . . . , c
′

i+1,qi+1
)

Output bit-flip indicator ec
i = (ec

i,1, e
c
i,2, . . . , e

c
i,qi+1

)

Output si = (si,1, si,2, . . . , si,ni
)

Probabilistic output s′

i = (s′i,1, s
′

i,2, . . . , s
′

i,ni
)

Output bit-flip indicator es
i = (es

i,1, e
s
i,2, . . . , e

s
i,ni

)
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Fig. 6. Characterizing a probabilistic block.

Hence, for example, ec
ij = 1 means that the ith proba-

bilistic block has made an error at the jth carry output.
The above equations can also be written in vector forms:

c′i+1 = ec
i ⊕ f c

i (c
′

i, ai), s′

i = es
i ⊕ fs

i (c
′

i, ai) (1)

where ec
i and es

i were defined in Table I, and ⊕ means
component-wise XOR on two vectors of binary numbers.

Finally, two assumptions are required, as stated in [5].
First, ci and ai are statistically independent. Second, ec

i

is conditionally independent of ci given c′i+1 and ai.

B. Equations for Error-rate Prediction

Suppose that one is interested in predicting the proba-
bility that ci+1 = α, c′i+1 = β for some vectors α and β

of binary numbers. Let γc, δ, ǫ and ζ be vectors of binary
numbers, and let C(α, β) be the set of all (γc, δ, ǫ, ζ) such
that ec

i = γc, ci = δ, c′i = ǫ and ai = ζ results in

ci+1 = f c
i(ci, ai) = fc

i (δ, ζ) = α,

c′i+1 = ec
i ⊕ fc

i (c
′

i, ai) = γc ⊕ fc
i (ǫ, ζ) = β.

The set C(α, β) can be obtained by, for example, exhaust-
ing all possible values of ec

i , ci, c′i and ai.
Equation (2) in the next page was derived in [5]. It is

recursive, namely, a probability for the (i+1)th block, i.e.,
P (c′i+1 = α, ci+1 = β), is computed from probabilities



P (c′i+1 = α, ci+1 = β) =
∑

C(α,β)

P (ec
i = γc | c′i = ǫ, ai = ζ)P (ai = ζ)P (c′i = ǫ, ci = δ). (2)

P (s′ij 6= sij) =
∑

Sij

P (es
ij = γs | c′i = ǫ, ai = ζ)P (ai = ζ)P (c′i = ǫ, ci = δ). (3)

of the previous block denoted as P (c′i = ǫ, ci = δ). If
probabilities of the first block are known, (2) can be used
iteratively to obtain probabilities of the other blocks. In
(2), P (ai = ζ) is a probability of the data, which is given
by the data statistics and is known in advance.

The conditional probability in (2) indeed characterizes
the probabilistic behavior of the ith block. Recall from
(1) that ec

i indicates whether errors were made at the
output ci of the i block. Therefore, one may think of the
conditional probability as a probability of error given the
inputs c′i = ǫ and ai = ζ. It characterizes the response of
the ith probabilistic block to a particular input pattern.

The conditional probability in (2) can be estimated by
experiments on the ith probabilistic block, where a large
number of randomly generated inputs are fed to the block
and the number of erroneous outputs are recorded subse-
quently [5]. This will be discussed in the next subsection.

Similarly, error-rates for si can be predicted by equa-
tion (3), whose derivation is found in [5]. Suppose that
one wishes to estimate the probability that sij 6= s′ij . Let
γs be a binary number, and let δ, ǫ and ζ be vectors of bi-
nary numbers. Let Sij be the set of all possible (γs, δ, ǫ, ζ)
such that s′ij 6= sij if es

ij = γs, ci = δ, c′i = ǫ and ai = ζ.

C. Characterizing Probabilistic Blocks

Recall that (2) and (3) require estimates of the following
probabilities for the ith block:

P (ec
i = γ

c | c
′

i = ǫ, ai = ζ), P (es
ij = γ

s |c′

i = ǫ, ai = ζ). (4)

It is done using the experiment illustrated in Fig. 6 (c).
The lower block is the ith block of a probabilistic circuit,
and the upper one is deterministic. This process is re-
ferred to as characterizing a probabilistic block [5, 9, 10].

The two blocks in Fig. 6 (c) have the same inputs gener-
ated by random-number generators of certain probability
distributions. Independence between cin and a is needed,
due to the first assumption mentioned in the last para-
graph of Section III-A. Outputs given by the blocks are
compared using the XOR function to check for errors.

To estimate (4), we perform the experiment of Fig. 6 (c)
with Θ sets of randomly generated inputs, where each set
contains a vector of qi bits for cin, and a vector of mi bits
for a. Let Γ(Θ) be the number of randomly generated
input sets such that cin = ǫ and a = ζ.

Out of those Γ(Θ) input sets, there are Λc(Θ) sets caus-
ing the output of the upper XOR function equal to γc;
and there are Λs(Θ) sets causing the jth bit of the output
of the lower XOR function equal to γs. By the strong law
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Fig. 7. A probabilistic block used in HSPICE simulations.

of large numbers (Theorem 4.1 of [11] and equation (4.1)
thereafter), we do the following estimation:

P (ec
i = γc | c′i = ǫ, ai = ζ) ≈ lim

Θ→∞

Λc(Θ)

Γ(Θ)
, (5)

P (es
ij = γs | c′i = ǫ, ai = ζ) ≈ lim

Θ→∞

Λs(Θ)

Γ(Θ)
. (6)

In practice, an infinitely large Θ is impossible. However,
one has to make sure that Θ is sufficiently large to allow
the estimated probabilities to converge and stabilize.

IV. Application to Probabilistic CSLA

The method of [5] described previously is now applied
to a PCSLA. In particular, we use (2) and (3) to predict
error-rates of a PCSLA, and then compare with error-
rates obtained from HSPICE simulations. We also ex-
periment with two decomposition methods proposed in
Section II, and discuss the accuracy of their predictions.

A. Obtaining Error-rates by HSPICE Simulation

Following [2, 5, 10, 9, 12], we construct a probabilistic
circuit by coupling noise sources to the output terminals of
some deterministic components. This is seen from Fig. 7,
which shows a diagram of a block in our simulations.

Each of the noise sources is generated independently,
and is of Gaussian distribution with zero mean and non-
zero root-mean-square (RMS) value. A noise source is
simulated in HSPICE by a voltage-controlled voltage-
source (VCVS) with a voltage gain equal to the desired
noise RMS. In Fig. 7 VCVSes are labeled by E1, E2, ...,
etc. Random numbers of the standard Gaussian distribu-
tion are generated by Matlab. A VCVS multiplies these
random numbers by its voltage gain to get a Gaussian



noise source of the desired RMS. Noise samples are added
to the output terminals every 500 ps.

Our simulations use the Synopsys 90nm generic library.
For this technology, the nominal voltage is 1.2V. We fol-
low [5, 9, 10, 12] to use a noise RMS of 0.2V.

To construct a PCSLA of 16 bits, we cascade four iden-
tical copies of the block shown in Fig. 7. Two hundred
thousand sets of input bits are randomly generated by
Matlab. All input bits are independent of each other, and
are of uniform distribution. The sampling period is 5 ns,
which is longer than the worst-case propagation delays
of the LSB-input-to-MSB-sum critical paths of the 16-bit
PCSLA. That is, every 5 ns, a newly generated set of in-
put bits is fed to the 16-bit PCSLA, and at the same time,
the output bits (which are due to the past input vectors)
are sampled. All blocks in the 16-bit PCSLA are identi-
cal, and have the same supply voltages chosen from the
set {0.8, 0.9, . . . , 1.2}.

A sampled output has the logical state zero (one) if the
output voltage is lower (equal to or higher) than half of the
supply voltage. We compare the sampled outputs with
the correct results. In our simulations, instead of actually
implementing a deterministic CSLA in HSPICE, the de-
terministic (correct) outputs are calculated by arithmetic
functions. The simulated error-rate of the ith sum-bit of
a PCSLA is defined as the number of errors observed at
the ith sum-bit in the HSPICE simulation, normalized by
the number of observed output samples, i.e., 200,000.

B. Predicting Error-rates

In the following, we are going to apply (2) and (3) to
predict error-rates of a PCSLA, which are then compared
with those error-rates obtained by HSPICE simulations.

As suggested in Section II, we may consider a PCSLA
as a cascade of identical instances of the block in Fig. 4.
In this case, the block has to be characterized by carry-
ing out an experiment illustrated in Fig. 6 (c). Since all
blocks are identical in the PCSLA considered here, the
characterization has to be done only once. In this char-
acterization experiment, 200,000 realizations of the 9-bit
input vector (cin, a) are randomly generated by Matlab.
All input bits are of uniform distribution and independent
of each other. Every 5 ns, a newly generated realization
of (cin, a) is fed to the blocks, and at the same time, their
outputs are sampled. Finally, the required conditional
probabilities are estimated using (5) and (6).

When characterizing a probabilistic block, noise filter-
ing effect of logic gates has to be taken into account. It
was observed in [12] that an output signal of a logic gate is
often less noisy than the corresponding (noisy) input sig-
nal. The main reason for this appears to be the so-called
noise filtering effect discussed in Section VI.B of [13]. In
short, noise filtering occurs when the duration of a noise
pulse is shorter than the propagation delay of a gate. It
was observed in [12] that it has prominent effect on the
accuracy of characterization of a probabilistic circuit.
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Fig. 8. Error-rates obtained by (2) and (3), and by HSPICE.

A practical way to deal with noise filtering effect is to
use a buffer to approximate the output loads of an output
terminal [5, 9, 10, 12]. The buffer is connected to a block’s
output, and output samples are taken after this buffer. A
buffer should have a suitable size, in order to accurately
model the actual loads that will be connected to the block
when it is chained with other blocks to form a PCSLA.

We also observe that different supply voltages require
slightly different buffer sizes. This is because the supply
voltage of a logic gate has an effect on its propagation
delay, which in turn affects the strength of noise filtering.
However, for simplicity, in this paper we only use a single
buffer size for all of the voltages 0.8-1.2V.

The experiment results are shown in Fig. 8, which
shows the predicted and simulated error-rates of the sum-
bits. “Decomposition 1” in Fig. 8 refers to the PCSLA of
Fig. 3 (a). We see that the predictions are fairly close to
the simulated error-rates for various supply voltages. For
clarity, the same results are also reproduced in Table II.
The numbers of errors made by the sum-bits in the simu-
lation are shown in the Sim rows. For example, for 0.8V,
3,677 out of 200,000 samples taken at the seventh sum-bit
(S7) are incorrect. The predicted number is 3,671, which
is shown in the Pred-1 row. This number is given by mul-
tiplying the predicted error-rate by 200,000 and rounding
to the nearest integer.

On average over all bit positions, a predicted error-rate
is within 1-6% of the corresponding simulated value when
the supply voltage is within 0.8-1.1V. Whereas, for 1.2V,
the deviations are on average 11% of the simulated val-
ues. The relatively large deviation for 1.2V is due to
the fact that 1.2V is the nominal voltage of the Synop-
sys 90nm technology and hence errors rarely occur when
the probabilities in (4) were estimated in the characteri-
zation process. The estimated probabilities are therefore
somewhat less accurate.

C. Prediction with Another Decomposition Approach

We now use another way to decompose a PCSLA. We
decompose a PCSLA into three types of blocks shown in
Fig. 5. Hence, besides Fig. 3 (a), the PCSLA can also be



TABLE II
Number of errors (out of 200,000 samples) predicted by the proposed equations and simulated by HSPICE.

V — S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
0.8 Sim 2150 2662 3226 3515 4311 3770 3677 3716 4543 3920 3709 3755 4550 3832 3622 3850
0.8 Pred-1 2218 2762 3234 3668 3994 3643 3671 3882 4099 3696 3697 3895 4106 3699 3698 3896
0.8 Pred-2 2233 2704 2871 2963 3719 3443 3239 3146 3809 3488 3262 3157 3815 3491 3263 3158
0.9 Sim 1108 1263 1387 1525 1895 1622 1529 1548 1890 1687 1587 1633 1925 1662 1498 1666
0.9 Pred-1 1157 1275 1383 1547 1866 1629 1559 1635 1909 1651 1570 1640 1912 1652 1571 1640
0.9 Pred-2 1117 1318 1366 1403 1809 1663 1539 1489 1852 1684 1549 1494 1855 1686 1550 1495
1.0 Sim 503 570 599 652 749 698 625 624 777 714 651 673 808 679 614 676
1.0 Pred-1 533 564 564 618 768 681 623 647 783 689 627 649 784 689 627 649
1.0 Pred-2 520 591 625 647 805 734 697 683 823 743 701 685 824 744 701 685
1.1 Sim 207 235 263 261 295 270 270 247 292 286 237 272 323 261 233 255
1.1 Pred-1 222 238 229 253 314 284 252 264 320 287 253 265 320 287 254 265
1.1 Pred-2 197 230 245 256 313 288 274 271 321 292 276 272 321 292 276 272
1.2 Sim 85 86 89 105 100 84 116 100 114 109 90 102 123 107 94 79
1.2 Pred-1 87 84 102 110 114 98 109 113 116 99 109 114 116 99 109 114
1.2 Pred-2 81 95 101 105 137 123 115 112 141 125 116 113 141 125 116 113

represented as the cascade circuit illustrated in Fig. 3 (b).
Because there are three different types of blocks, three
rounds of characterization are required, each round for
each individual block. We select the same parameters as
those used previously, i.e., 200,000 input realizations, uni-
formly distributed and independent input bits, 5 ns sam-
pling time, and 0.2V noise RMS.

The predictions by (2) and (3) are shown in Fig. 8 (de-
composition 2). The results are also shown in the Pred-2
row of Table II. The predicted error-rates are, again, fair
close to those simulated by HSPICE. Nevertheless, they
are not as accurate as those obtained by the first decompo-
sition method presented previously (Pred-1). On average
over all bit positions, a predicted error-rate is within 3-
7% of the corresponding simulated value when the supply
voltage is within 0.9-1.1V. Whereas, for 0.8 and 1.2V,
the deviations are on average 12% and 18%, respectively,
of the simulated values.

A possible explanation is that the influence of supply
voltage on the noise filtering effect of logic gates now
becomes more significant. Since we have used only one
buffer size for all supply voltages, the predictions would
be accurate for some voltages (e.g., 0.9-1.1V) but less ac-
curate for other voltages. If our speculation is correct,
then one can use different buffer sizes for different supply
voltages in order to improve the accuracy.

V. Conclusion

The method of [5] has been used to predict error-rates of
a probabilistic carry-select adder (PCSLA). Experimental
results suggested that the predictions were close to error-
rates simulated by HSPICE simulations. These results
provided evidence that the error-rate prediction method
is versatile and applicable to some non-trivial circuits.

We further suggest that, by appropriately grouping cir-
cuit components into various blocks, the error-rate pre-
diction method can handle not only cascade circuits, but
also circuits with more complex structure. This has been
demonstrated with a PCSLA, in which a multi-bit adder
circuit with a seemingly non-cascade structure was trans-

formed into a cascade circuit, which was then handled
successfully by the error-rate prediction method.
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grated Circuits: A Design Perspective, 3rd ed. Prentice Hall,
2003.

[9] M. S. K. Lau, K. V. Ling, Y. C. Chu, and A. Bhanu, “Mod-
eling of probabilistic ripple-carry adders,” Proceedings of 2010
DELTA, pp. 201–206.

[10] ——, “A general mathematical model of probabilistic ripple-
carry adders,” in Proceedings of 2010 DATE, CD-ROM.

[11] S. Ross, A First Course in Probability, 7th ed. Prentice Hall,
2006.

[12] A. Bhanu, M. S. K. Lau, K. V. Ling, V. J. Mooney III, and
A. Singh, “A more precise model of noise based CMOS errors,”
Proceedings of 2010 DELTA, pp. 99–102.

[13] P. Korkmaz, B. E. S. Akgul, and K. V. Palem, “Energy, per-
formance, and probability tradeoffs for energy-efficient proba-
bilistic CMOS circuits,” IEEE Transactions on Circuits and
Systems I, vol. 55, no. 8, pp. 2249–2262, 2008.


