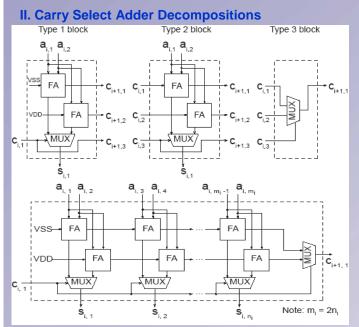
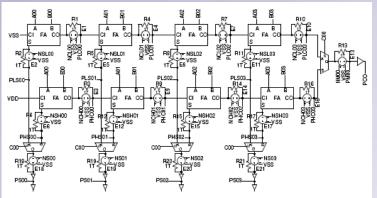


Error-Rate Prediction for Probabilistic Circuits with More General Structures


School of Electrical and Electronic Engineering

Mark S. K. Lau, Keck Voon Ling, Arun Bhanu and Vincent J. Mooney III*


Also with Georgia Institute of Technology, USA

Computation errors

Abstract. A methodology has been proposed recently to predict errorrates of probabilistic circuits having a cascade structure. The objective of this poster is two fold. First, the methodology is applied, for the first time in the literature, to a probabilistic carry select adder, which has a more complex structure than the adders mentioned in previous papers. Second, it shows that the methodology is also applicable to some seemingly non-cascade circuits. The key technique is to appropriately group circuit components into various blocks before applying the methodology.

IV. HSPICE Setup for Probabilistic Carry Select Adder.

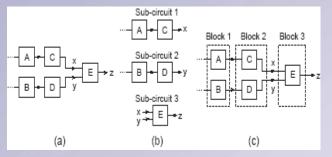
V. References

Palem, "Energy aware computing through probabilistic switching: a study of limits," IEEE Transactions on Computers, vol. 54, no. 9, pp. 1123-1137, 2005.
George et al., "Probabilistic arithmetic and energy efficient embedded signal processing," Proceedings of CASES 2006, pp. 158-168, 2006.
Lau et al., "Modeling of probabilistic ripple-carry adders," Proceedings of DELTA 2010.

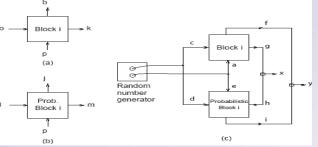
[4] Lau et al., "Error-rate prediction for a class of probabilistic circuits with applications to carry-skip adders," submitted to 16 ASP-DAC

Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, www.ntu.edu.

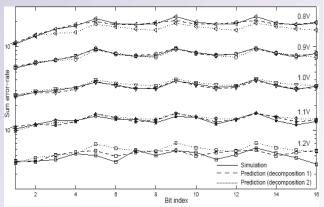
I. Cascade structure transformation


0. What is probabilistic computing?

arithmetic operations [1].


Energy cons

· Technology that allows computation with occasional erroneous


· Trading correctness of circuit operations for significant power saving.

III. Characterizing a Probabilistic Block

V. Application to Probabilistic Carry Select Adder

