
Vincent J. Mooney IIIVincent J. Mooney III
http://http://codesign.ece.gatech.educodesign.ece.gatech.edu

Assistant Professor, School of Electrical and Computer EngineeriAssistant Professor, School of Electrical and Computer Engineeringng
Adjunct Assistant Professor, College of ComputingAdjunct Assistant Professor, College of Computing

Georgia Institute of TechnologyGeorgia Institute of Technology
Atlanta, Georgia, USAAtlanta, Georgia, USA

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS Project of the HW/SW HW/SW RTOS Project of the HW/SW CodesignCodesign Group at GTGroup at GT
©Vincent J. Mooney III, 2002

Hardware/Software Partitioning of Hardware/Software Partitioning of
Operating SystemsOperating Systems

The The δδ Hardware/Software RTOS Generation Framework for Hardware/Software RTOS Generation Framework for SoCSoC

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

22

OutlineOutline
• Vision: Hardware/Software Real-Time

Operating System
• Custom RTOS Hardware IP Components

• System-on-a-Chip Lock Cache (SoCLC)
• SoC Dynamic Memory Management Unit (SoCDMMU)

•• The The δδ Hardware/Software RTOS Generation Hardware/Software RTOS Generation
FrameworkFramework
•• Comparison with the RTU Hardware RTOSComparison with the RTU Hardware RTOS

•• ConclusionConclusion

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

33

Vision: Dynamic Software/ Vision: Dynamic Software/
Hardware RTOS DesignHardware RTOS Design

Key to System-on-a-Chip architecture
optimization and customization

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

44

Recent Recent SoCSoC Example: Example:
BroadcomBroadcom BCM1400BCM1400• Four Proces-

sor Cores
– MIPS64
– 1GHz
– 8-way 1MB

Shared L2

• On-chip
ZBbus
– maintains

coherency
– proprietary

• Off-chip HT/
SPI-4 19Gb/s

[Levy02] M. Levy, “Chip Combines Four 1GHz Cores,”
Microprocessor Report, pp. 12-14, October 2002.

MIPS64
Core0

MIPS64
Core1

MIPS64
Core2

MIPS64
Core3

L2
Shared

Mem
Arbiter

XMemory
Bridge

Packet
DMA

SoC
Interfaces

HT/
SPI-4

HT/
SPI-4

HT/
SPI-4

Port0 Port1 Port2

ZBbus: 128Gb/s @ 1GHz

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

55

Motivational Example: Home 2005

SoC Device Central Storage Unit (e.g., PC)

wireless link wired link

Programmable
PDA

Projectors
Projected Light Displays

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

66

AnalogyAnalogy

• Microprocessor design
– Compiler
– Computer architecture

• SoC design
– Dynamic hw/sw RTOS
– SoC architecture

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

77

Building BlocksBuilding Blocks

• SoC Programming Model
– multi-threading, shared mem., message passing,

control-data flow graph
• SoC Programming Environment

– δ Hardware/Software RTOS
• Microprocessor Programming Model

– C/C++/Java/other serial language
• Microprocessor Programming Environment

– gcc, various

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

88

ApproachApproach
• δ Hw/Sw RTOS made up of library components
• Library component = predefined C code, assembly

code or HDL code
• Similar to existing RTOS’s, except for the HDL code

– ex.: SoC Lock Cache in hardware [1]

• RTOS HDL code can be automatically generated by
a custom “IP Generator”
– ex.: PARLAK SoC Lock Cache generator, poster 5P.11

here in DATE 2003

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

99

The The δδ Hardware/Software RTOS Hardware/Software RTOS
Generation FrameworkGeneration Framework

RTOS1

Hardware
RTOS library

Software
RTOS library

GUI tool

SW RTOS
w/ dyn.
memory
mngmnt

SW RTOS
+

SoCDMMU

SW RTOS
+ SoCLC +
SoCDMMU

Compile Stage for each systemApplication

Executable HW file
for each

Executable SW file
for each

Simulation in Seamless
CVE

Base
Architecture

library

VCS XRAY

RTOS2 RTOS3 RTOS4 RTOS5

RTU

User
Input

SW RTOS
w/ sem

SW RTOS
+

SoCLC

RTOS6

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1010

OutlineOutline
• Vision: Hardware/Software Real-Time

Operating System
• Custom RTOS Hardware IP Components

• System-on-a-Chip Lock Cache (SoCLC)
• SoC Dynamic Memory Management Unit (SoCDMMU)

•• The The δδ Hardware/Software RTOS Generation Hardware/Software RTOS Generation
FrameworkFramework
•• Comparison with the RTU Hardware RTOSComparison with the RTU Hardware RTOS

•• ConclusionConclusion

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1111

SoCSoC Lock CacheLock Cache
• A hardware mechanism that resolves the critical section
(CS) interactions among PEs
• Lock variables are moved into a separate “lock cache”
outside of the memory
• Improves the performance criteria in terms of lock latency,
lock delay and bandwidth consumption

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1212

Software/Hardware ArchitectureSoftware/Hardware Architecture
• Multiple application tasks
• Atalanta-RTOS
• Four MPC750s
• SoCLC provides lock syn-

chronization among PEs

Atalanta-RTOS

Application Software
(Tasks)

Extension

Software

Hardware

Memory

MPC750A MPC750D

Arbitration
Logic

SoCLC

MPC750B
SoC Lock Cache

MPC750C

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1313

ExperimentExperiment
Example: Database transaction application [1]

[1] M. A. Olson, “Selecting and implementing an embedded database system,” IEEE Computer,
pp.27-34, September 2000.

long_Req1

Access of
Object O2

by transaction1

transaction1

transaction2

transaction3 O4

transaction4

short_Req4short_Req3

O2

O3

long_Req3

O4

O2

Access of
Object O4

by transaction3

ServerClient

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1414

Experimental ResultExperimental Result
Comparison with database application example [2]

• RTOS1 with semaphores and spin-locks

• RTOS2 with SoCLC, no SW semaphores or spin-locks

(clock cycles) * Without SoCLC With SoCLC Speedup

Lock Latency 1200 908 1.32x

Lock Delay 47264 23590 2.00x

Execution Time 36.9M 29M 1.27x

* Semaphores for long critical sections (CSes) and
spin-locks for short CSes are used instead of SoCLC.

[2] B. S. Akgul, J. Lee and V. Mooney, “System-on-a-chip processor synchronization hardware
unit with task preemption support,” CASES ‘01, pp.149-157, November 2001.

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1515

OutlineOutline
• Vision: Hardware/Software Real-Time

Operating System
• Custom RTOS Hardware IP Components

• System-on-a-Chip Lock Cache (SoCLC)
• SoC Dynamic Memory Management Unit (SoCDMMU)

•• The The δδ Hardware/Software RTOS Generation Hardware/Software RTOS Generation
FrameworkFramework
•• Comparison with the RTU Hardware RTOSComparison with the RTU Hardware RTOS

•• ConclusionConclusion

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1616

SoCDMMUSoCDMMU: Move L2 Memory : Move L2 Memory
Allocation to One (Hardware) UnitAllocation to One (Hardware) Unit

=> “=> “UndistributeUndistribute” L2 Memory Allocation Algorithm” L2 Memory Allocation Algorithm

PEn

Cache

PE1

Cache

PE2

Cache

.

Global Memory

DMMU

...

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1717

Levels of Memory ManagementLevels of Memory Management

• The SoCDMMU
dynamically allocates the
global on-a-chip memory
among the PE’s (Level 2).

• Each PE handles the local
dynamic memory alloca-
tion among the processes/
threads (Level 1).

PE1 PE2

SoCDMMU

P1 P2 P3

Global Memory

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1818

Execution TimesExecution Times

• Synthesized using the TSMC 0.25u .
• Clock Speed: 200MHz.
• Size: ~7500 gates per PE (not including Memory

Elements: Allocation Table and Address Converter).

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

1919

AtalantaAtalanta Support for the Support for the SoCDMMUSoCDMMU
ObjectivesObjectives

• Port SoCDMMU hardware to an RTOS (ease of use)
• Atalanta is an open-source RTOS written at Georgia Tech

– similar to uC-OS II or VRTXoc

• Add Dynamic Memory Management to Atalanta
• Use the same Memory Management API Functions
• Keep the Memory Management Deterministic

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2020

Comparison to a Fully SharedComparison to a Fully Shared--Memory Memory
Multiprocessor SystemMultiprocessor System

• Global memory of 16MB; L1 $ is 64 kB.
• Each ARM processor runs at 200MHz.
• Accessing the Global Memory costs 5 cycles.
• A handheld device that utilizes this SoC can be used for OFDM communication as

well as other applications (MPEG2 video player).
• Initially the device runs an MPEG2 video player. When the device detects an

incoming signal it switches to the OFDM receiver. The switching time (which
includes the time for memory management) should be short or the device might
lose the incoming message.

Bus
Arbiter

SoCDMMU

ARM9

L1 $

ARM9

L1 $

ARM9

L1 $

ARM9

L1 $

Global Memory

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2121

Area Estimate of The Area Estimate of The SoCSoC
• ARM9TDMI Core: 112k transistors
• L1 $ (128KB: 64KB I$ + 64KB D$): ~6.5M* transistors
• SoCDMMU (w/o the memory elements -- Allocation Table

and Address Converters): ~30k transistors.
• Allocation Table: ~30k transistors
• Address Converter: ~60k* transistors
• Total-L1-L2: (4*112 + 30 + 30 + 4*60)=748k trans.=~.75M
• Total-L2: ~.75M+(4*~6.5M) = ~26.75M transistors
• L2 (Global Memory)=~16M * 8 = ~128M transistors

* Using dual-port 6T SRAM cells..

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2222

Comparison to a Fully SharedComparison to a Fully Shared--Memory Memory
Multiprocessor SystemMultiprocessor System

32 Kbytes
8 Kbytes0.5 Kbytes
32 Kbytes1.5 Kbytes
1.5 Kbytes1500 Kbytes
1 Kbytes5 Kbytes
32 Kbytes500 Kbytes
34 Kbytes2 Kbytes

OFDM ReceiverMPEG-2 Player

• Sequence of Memory Allocations Required

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2323

Comparison to a Fully SharedComparison to a Fully Shared--Memory Memory
Multiprocessor SystemMultiprocessor System

Memory Management Execution time during transition from the
MPEG2 player to the OFDM Receiver

*Note this number exceeds 10X when using GCC libc memory management functions
instead of ARM SDT2.5 embedded malloc() and free() functions.

281 cycles 4.4X*

3.9X1244 cycles

=> For this 154.75 Million transistor chip, 30K + 30K + 240K = 300K
(0.19% of 154.75M), or, if memory can be allocated by the SoCDMMU,
30K (0.02% of 154.75M) yields a 4-10X speedup in memory allocation

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2424

OutlineOutline
• Vision: Hardware/Software Real-Time

Operating System
• Custom RTOS Hardware IP Components

• System-on-a-Chip Lock Cache (SoCLC)
• SoC Dynamic Memory Management Unit (SoCDMMU)

•• The The δδ Hardware/Software RTOS Generation Hardware/Software RTOS Generation
FrameworkFramework
•• Comparison with the RTU Hardware RTOSComparison with the RTU Hardware RTOS

•• ConclusionConclusion

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2525

δδ Hardware/Software RTOS Hardware/Software RTOS
Generation FrameworkGeneration Framework

and current simulation platformand current simulation platform

Hardware
RTOS

Library

Makefile

User.h
SW RTOS

Top.v
HW RTOS

Base
Architecture

Library

GUI Tool

Software
RTOS

Library

SW
Compile

HW
Compile

User
Input

Result
and

Feedback

Application

Compiled
Hardware

Description

Executable
HW

Simulation
in

Seamless
CVE

Executable
SW

XRAY

Modelsim
or VCS

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2626

To help the user examine which configuration is
most suitable for the user’s specific applications

To help the user explore the RTOS design space
before chip fabrication as well as after chip
fabrication (in which case reconfigurable logic must
be available on the chip)

To help the user examine different System-on-a-
Chip (SoC) architectures subject to a custom RTOS

δδ Hardware/Software RTOS Hardware/Software RTOS
Generation Framework GoalsGeneration Framework Goals

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2727

Motivation (1/2)Motivation (1/2)

HW/SW RTOS partitioning approach

Three previous innovations in HW/SW RTOS
components

• SoCLC: System-on-a-Chip Lock Cache

• SoCDMMU: System-on-a-Chip Dynamic Memory
Management Unit

• SoCDDU: System-on-a-Chip Deadlock Detection Unit

• RTU Hardware RTOS

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2828

Motivation (2/2)Motivation (2/2)
Constraints about using three previous HW/SW RTOS

innovations
• Perhaps not enough chip space for all three of them

• All of them may not be necessary

⇒ The δδ framework
• Enables automatic generation of different mixes of the
three previous innovations for different versions of a
HW/SW RTOS

• Enables selection of the RTU hardware RTOS

• Can be generalized to instantiate additional HW or SW
RTOS components

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

2929

Our RTOS in PostOur RTOS in Post--FabricatonFabricaton ScenarioScenario
Application(s) run on the SoC

using standard RTOS APIs

Atalanta software RTOS
• A multiprocessor SoC RTOS

The RTOS and device drivers are
loaded into the L2 cache memory

• All Processing Elements (PEs)

share the kernel code and data
structures

Hardware RTOS components are
downloaded into the reconfigurable
logic

HW/
SW

RTOS

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3030

Experimental SetupExperimental Setup
Six custom RTOSes

• With semaphores and spin-locks, no
HW components in the RTOS

• With SoCLC, no SW IPCs

• With dynamic memory management
software, no HW RTOS components

• With SoCDMMU, no SW IPCs

• With SoCLC and SoCDMMU

• With RTU

Each with the Base architecture

Each with application(s)
Each executable in Seamless CVE

4 MPC750 processors
Reconfigurable logic
Single bus

RTOS1

Hardware
RTOS library

Software
RTOS library

GUI tool

SW RTOS
w/ dyn.
memory
mngmnt

SW RTOS
+

SoCDMMU

SW RTOS
+ SoCLC +
SoCDMMU

Compile Stage for each systemApplication

Executable HW file
for each

Executable SW file
for each

Simulation in Seamless
CVE

Base
Architecture

library

VCS XRAY

RTOS2 RTOS3 RTOS4 RTOS5

RTU

User
Input

SW RTOS
w/ sem

SW RTOS
+

SoCLC

RTOS6

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3131

RTU Hardware RTOSRTU Hardware RTOS

An RTOS in hardware LOCAL
BUS

TD
BI GBI

Accelerator
Interface

MsgQLib Scheduler

RTC

IRQ• Real-Time Unit (RTU)
– scheduling
– IPC
– dynamic task creation
– timers

• Custom hw => upper bound on # tasks
• Reconfigurable hw => can alter max. # tasks, max. # priorities
• Prof. Lennart Lindh, Mälardalens U., Västerås, Sweden
• RealFast, www.realfast.se

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3232

MethodologyMethodology

An SoC architecture with the RTU Hardware RTOS

RTU in
Reconfig.

Logic

Memory
Controller

and
Memory

Arbiter,
Intr.

Controller,
Clock

MPC755-2

L1

MPC755-1

L1

MPC755-3

L1

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3333

MethodologyMethodology

An SoC architecture with a hardware/software RTOS

SoCLC in
Reconfig.

Logic

Memory
(Atalanta

RTOS)

Bus Arbiter,
Intr.

Controller,
Clock

MPC755-2

L1

MPC755-1

L1

MPC755-3

L1

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3434

MethodologyMethodology

δ Framework
– GUI

Specilized SW
RTOS component

IPC module
linking methodHW RTOS

component

Number of
CPUs in system

5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3535

ImplementationImplementation
Verilog top file generation example

Desc RTU
~~~

enddesc

IP Library• Start with RTU description clock clock_gen (SYSCLK);

cpu_mpc750 cpu1 (…);

\rtu.rtu(struct) rtu_comp (…);

arbiter arb (br_bar, bg_bar…);

(i)
Generate 

code• Generate instantiation code

multiple instantiations of 
same unit if needed (e.g., 
PEs) (ii) Add wires 

and initial states

wire ADDR;
wire DATA;
wire BR_BAR;
wire BG_BAR;
wire SYSCLK;

…
initial begin … end;

• Add wires and initial 
statements

(iii)
After 
Instan-
tiation

PEs 1,2,3,…

Memory 
1,2,…

SoCLC

Arbiter

Clock



5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3636

Experimental Results (1/3)Experimental Results (1/3)
Comparison

• A system with RTU hardware RTOS

• A system with SoCLC hardware and software RTOS

• A system with pure software RTOS

* A semaphore is used in pure software and a hardware 
mechanism is used in SoCLC and RTU.

26%16%0%Reduction

279480317916379440(in cycles)
30 tasks

33%29%0%Reduction

6703871365100398(in cycles)
6 tasks

With RTUWith SoCLCPure SW *Total Execution Time



5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3737

Experimental Results (2/3)Experimental Results (2/3)
The number of interactions

5810Number of short locks

303Number of context switches

6012Number of semaphore 
interactions

30 tasks6 tasksTimes



5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3838

Experimental Results (4/4)Experimental Results (4/4)
The average number of cycles spent on communication, context switch 

and computation (6 task case)

842185778523computation

283532313218context switch

2075373018944communication

With RTUWith SoCLCPure SWcycles



5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

3939

Hardware AreaHardware Area

About 250000 gates7435 gates
TSMC 0.25μm 

library from 
LEDA

RTU for 3 processorsSoCLC (64 short CS locks + 
64 long CS locks)Total area



5 March 2003 presentation at DATE5 March 2003 presentation at DATE HW/SW RTOS ProjectHW/SW RTOS Project
©Vincent J. Mooney III, 2002

4040

ConclusionConclusion
A framework for automatic generation of a custom  

HW/SW RTOS
Experimental results showing

• a multiprocessor SoC that utilizes the SoCDMMU has a 4X 
overall speedup of the application transition time over fully 
shared memory that does not utilize the SoCDMMU
• speedups with the SoCLC, RTU
• addition hw RTOS component in references: SoCDDU

Future work
support for heterogeneous processors
support for multiple bus systems/structures


