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Moore’s Prediction (“Law”)
Si atom ~ 2Å
.09u = 90nm = 900Å July 2004

⇒ ~450 atoms, 902 = 8100

.065u = 65nm = 650Å Jan 2006
⇒ ~325 atoms, 652 = 4225

.045u = 45nm = 450Å July 2007
⇒ ~225 atoms, 452 = 2025

.032u = 32nm = 320Å Jan 2009
⇒ ~160 atoms, 322 = 1024

.022u = 22nm = 220Å July 2010
⇒ ~110 atoms, 222 = 488

.016u = 16nm = 160Å Jan 2012
⇒ ~80 atoms, 162 = 256

.011u = 11nm = 110Å July 2013
⇒ ~55 atoms, 112 = 121

.008u = 8nm = 80Å Jan 2015
⇒ ~40 atoms, 82 = 64

.006u = 6nm = 60Å July 2016
⇒ ~30 atoms, 62 = 36

.004u = 4nm = 40Å Jan 2018
⇒ ~20 atoms, 42 = 16

.003u = 3nm = 30Å July 2019
⇒ ~15 atoms, 32 = 9

.002u = 2nm = 20Å Jan 2020
⇒ ~10 atoms, 22 = 4

n+ n+

DrainSource

Gate

P-substrate

NFET:
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Power Consumption

Power consumption of VLSI is a 
fundamental problem of mobile 
devices as well high-performance 
computers 

Limited operation (battery life)
Heat
Operation cost

Power = dynamic +  static 
Dynamic power more than 90% 
of total power (0.18u tech. and 
above)
Static nearly equal to dynamic 
power for latest processes 
(.65u)

Dynamic power reduction: 
Technology scaling
Frequency scaling
Voltage scaling

IBM PowerPC 970*

*N. Rohrer et al., “PowerPC 970 in 130nm and 90nm Technologies," IEEE 
International Solid-State Circuits Conference, vol 1, pp. 68-69, February 2004.
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Cost of latest Silicon Processes

Mask sets for 90nm: over $1 million 
(U.S. $)
NRE costs $10 to $100 million U.S.

Verification costs can exceed design costs
Embedded software costs may exceed 
hardware costs
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Increasing Cost of Customization*

Example: Design with
80 M transistors in 
100 nm technology

Estimated Cost -
$85 M -$90 M
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12 – 18 months

Cost and Risk rising to unacceptable 
levels 
Top cost drivers

Verification (40%)
Architecture Design (26%)
Embedded Software Design

1400 man months (SW)
1150 man months (HW)

HW/SW integration

*Handel H. Jones, ”How to Slow the Design Cost Spiral,” Electronics Design Chain, September 2002, www.designchain.com
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Yearly Chip Design Starts
Roughly 8,000 in 1996
Peaked at approx. 12,000 in 2000
Recent years approx. 3,000 per year
However, comparing, say, 2005 to 2000, 
number of EDA tool licenses purchased 
roughly the same

Larger team per chip design start

System level chip design 2005
33.5% U.S.
26.1% Japan
9.9% Taiwan, 5.8% Germany, 5.4% China, 5.3% Korea
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Digital Silicon CMOS VLSI Trends
Yesterday 

(1980s)
Today Tomorrow

memory

gate arrays

ASICs

processors

memory

gate arrays

ASICs

processors

reconfigurable

SoC

memory

ASICs

processors

reconfigurable

Platform SoC

Custom SoC ≤ 9
products

≥ 10
products

gate arrays /
struct. ASIC
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Embedded Systems Market 
Drivers

1950s-1980s: Business Applications
1990s-Today: Consumer Electronics

Some observations
profit margins tight in consumer
volumes and risk high in consumer
supply chain as or more important than 
raw technology
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Chip Software Business Models

Electronics Design Automation
Synopsys, Cadence, Mentor, Synplicity
Yearly/quarterly subscriptions

Embedded Operating System Companies
Windriver, Montavista, Timesys, Integrity, etc.
Upgrades, debuggers, Integrated Development Environment 
(IDE)
Per-seat costs 1/10 of EDA

$10K per seat (as compared to $100K for EDA)

Cooley’s observation
FPGA software sells for far less than ASIC software
Many FGPA companies give away software (lock-in…)
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Failed Reconfigurable Attempts

ST
Phillips
Texas Instruments
Pilkington
Atmel
Samsung
Motorola
IBM
Vantis
Lattice

Quicksilver
Concurrent Logic
Toshiba
Chameleon
Plessey
Adaptive Silicon
Dynachip
Crosspoint
Lucent
National Semiconductor
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A Few Successes

Triscend
Synplicity

Note1:
Xilinx, Altera: each probably have, as a lower 
bound, approx. 12 million lines of code for FPGA 
programming tools

Note2:
Key reconfigurable patents from 1970s have 
expired
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Comments (probably incorrect) on Trends!

Reconfigurable like to increase superlinearly
(increasing % of market)

Tools critical to adoption
Chips for consumer electronics to drive 
technology

E.g., Cell processor
Embedded software and operating systems 
more important and less supported than ever
Breakthrough platform SoC design flows to 
determine chip success

E.g., will not be Cell because too difficult to 
program…
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System-on-a-Chip (SoC)

This architecture is suitable for embedded multimedia 
applications, which require great processing power 
and large volume data management

RISC 2

DSP 2

Analog Interface Network Interface

DSP 1
L1 Cache

L1 Cache

RISC 1

L1 Cache

Global Memory
(DRAM /SRAM)

Custom Logic

SoCDMMU

Reconfigurable
Logic
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SoC
The existence of global on-chip memory, 
arises the need for an efficient way to 
dynamically allocate it among the PEs
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Problem

How to deal with the allocation of the 
large global on-chip memory between 
the PEs in a dynamic yet deterministic 
way?
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Solution 1

Custom Memory Configuration (Static)
Hardware/Software co-synthesis with memory 
hierarchies [Wayne Wolf]
Matisse [IMEC]
Memory synthesis for telecom applications 
[WUYTACK et Al.], [YKMAN et al.]
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Custom Memory Configuration
Pros: 

Easy
Deterministic

Cons:
Inefficient memory utilization
System modification after implementation is 
very difficult if not impossible
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Solution 2

Shared memory multiprocessor 
(Dynamic)

Using conventional software memory 
Allocation/Deallocation techniques (e.g., 
Sequential Fits, Buddy Systems, etc.)
Sharing one heap (using locks)
Multiple heaps (one per processor)
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Shared memory multiprocessor

Pros
Flexible
Efficient memory utilization

Cons
Worst case execution time is very high and 
usually not deterministic
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Our Solution

We introduce a new memory management 
hierarchy, Two-Level Memory 
Management, for a multiprocessor SoC
Two-Level Memory Management combines 
the best of dynamic memory management 
techniques (flexibility and efficiency) with 
the best of  static memory allocation 
techniques (determinism).
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Our Solution (2)

In Two-Level Memory Management, large on-
chip memory is managed between the on-
chip processors (Level Two)
Memory assigned to any processor is 
managed by the operating system running on 
that particular processor (Level One)
To manage Level Two, we present the 
System-on-a-Chip Dynamic Memory 
Management Unit (SoCDMMU)
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Dynamic Memory Management

Automatic
Automatically recycles memory that a program will 
not use again
Either as a part of the language or as an extension 

Manual
The programmer has direct control over when 
memory is allocated and when memory may be 
de-allocated (e.g., by using malloc() & free())
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Memory Allocation
Software Techniques

Sequential Fits

First Fit,
Next Fit,
Best Fit or 
Worst Fit
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Memory Allocation
Software Techniques

Segregated Free Lists

Simple Segregated Storage 
Segregated Fit
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Memory Allocation
Software Techniques

Buddy System

Bitmapped Fits
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Memory Allocation
Hardware Techniques

Knowlton*

Binary buddy allocator that can allocate memory blocks whose 
sizes are a power of 2

Puttkamer *

Hardware buddy allocator (using Shift Register)
Chang and Gehringer *

Modified hardware-based binary buddy system that         
suffers from the blind spot problem

Cam et al. *
Hardware buddy allocator that eliminates the blind spot
problem in Chang’s allocator

* References are available in the thesis by M. Shalan
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Memory Allocation
Hardware Techniques

Request size is 3 

It searches for 4 

[3 rounded to the nearest power of 2]
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Memory Model Assumptions
The global memory is divided into a fixed number of 
equally sized blocks ( e.g., 16KB)
The global memory allocation done by the 
SoCDMMU will be referred to as G_allocation
The global memory de-allocation done by the 
SoCDMMU will be referred to as G_deallocation
The PE can G_allocate one or more than one block.
Different PEs can issue the G_allocation/ G_de-
allocation commands simultaneously
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Memory Model Assumptions 
(continued)

Each memory block has one 
physical address and one or 
more virtual addresses. The 
block virtual address may 
differ from PE to another
The block virtual address will 
be referred to as PE-address
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Two-Level Memory Management

The SoCDMMU manages the memory between 
the PEs
The OS (or custom software) on each PE 
manages the memory between the processes 
that run on that PE
The process requests the memory allocation 
from the OS or custom software. If there in not 
enough memory, the OS requests memory 
allocation from the SoCDMMU
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Types of Memory Allocation

Exclusive
• Only the the owner can access it. No other PE can 

access it

Read/Write
• The owner can read/write to it. Other PE’s can 

read from it if it G_allocated it as read only

Read Only
• The PE G_allocates the memory for read only. 

Other PE G_allocated it as Read/Write
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PE-SoCDMMU Interface
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SoCDMMU Commands
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The SoCDMMU Hardware

Address Converter
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The SoCDMMU Hardware
The Basic SoCDMMU

Basic SoCDMMU
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The SoCDMMU Hardware
The Basic SoCDMMU
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Basic SoCDMMU

The SoCDMMU Hardware
The Basic SoCDMMU
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Basic SoCDMMU

The SoCDMMU Hardware
The Basic SoCDMMU
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Basic SoCDMMU

The SoCDMMU Hardware
The Basic SoCDMMU
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The SoCDMMU Hardware
The Allocation Unit

1 allocate(size,in[0:n-1]) {
2      for (i:=0 to n-1) {
3 if (in[i]==0 and size>0) {
4 out[i]:=1;
5 size:=size-1;
6 } else out[i]:=0;
7      }
8      if (size>0) return NOT_ENOUGH_MEMORY;
9      else return out;
10 }
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The SoCDMMU Hardware
The Allocation Unit

0                          0             0             0

1                             1               1               1

0                          0             1             1

21

1               0              0

0
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The SoCDMMU Hardware
The Allocation Unit
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The SoCDMMU Hardware
The Allocation Unit

8.5X3.3XComparison

17.5 MHz56.3 ns17930Un-optimized Alocator

150 MHz6.6 ns5364Optimized Allocator

Max. Clock Speed 
(MHz)

Worst Delay 
(ns)

Area      
(NAND gates)

256 G_blocks.  
Synthesized using Synopsys Design CompilerTM and  a TSMC              
0.25u library from LEDA Systems. 
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The SoCDMMU Hardware 
Execution Times/Synthesis

Synthesized using the TSMC 0.25u .
Clock Speed: 300MHz
Size: 

~7500 gates  (not including the Allocation Table and 
Address Converter)
Allocation Table: The size of 0.66KB 6T-SRAM
Address Converter: The size of 1.22 KB 6T-SRAM
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Microcontroller Implementation

Stores the allocation Status
Executes the allocation commands
Executes the de-allocation 
commands

Microcontroller Roles:

Custom HW: 16 Cycles WCET

uC: 231 Cycles BCET
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Automatic Generation: 
Motivation
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SoCDMMU IP Generation
To overcome the productivity gap, 
Intellectual Property (IP) cores should be 
used in SoC designs
Also, tools should be used to automatically 
customize/configure the IPs

Processor Generators: Tensilica, ARC Core, etc.
Memory Compilers: Artisan, Virage, LEDA, etc.

The SoCDMMU as an IP core should be 
customized before being used in a system 
different than the one for which it was 
designed
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DX-Gt Overview

DX-Gt

H/W DB VPP
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RTOS Support
Introduction

Conventional memory allocation algorithms 
(e.g., Buddy-heap) are not suitable for Real-
Time systems because they are not 
deterministic and/or the WCET is high
This is mainly because of memory 
fragmentation and compaction. Also, most 
allocation algorithms usually use linked lists 
that have constant search time.
An RTOS uses a different approach to make 
the allocation deterministic
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RTOS Support
Introduction

An RTOS (e.g., uCOS-II, eCOS, VRTXsa, etc., ) 
usually divides the memory into pools each of which 
is divided into fixed-sized allocation units and any 
task can allocate only one unit at a time

Pool 1 Pool 2 Pool 3
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Atalanta Memory Management
Overview

Atalanta is an open source 
RTOS developed at GaTech
Atalanta allows tasks to obtain 
fixed-sized memory blocks from 
partitions made of a contiguous 
memory area
Allocation and de-allocation of 
these memory blocks are done 
in a constant time
No partition can be created at 
the run-time

Partition

Block
SizePartition

Size

Start
Address

.

.

.
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Atalanta Memory Management
API Functions

asc_partition_gain
Get free memory block from a partition (non-blocking)

asc_partition_seek
Get free memory block from a partition (blocking)

asc_partition_free
Free a memory block

asc_partition_reference
Get partition information 
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Atalanta Support for the SocDMMU
Objectives

Add Dynamic Memory Management to 
Atalanta
Use the same Memory Management API 
Functions
Keep the Memory Management Deterministic
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Atalanta Support for the SocDMMU
Facts

The SoCDMMU needs to know where the allocated 
physical memory will be placed in the PE address 
space
The PE address space is much larger than the 
physical address space (64 MB* vs. 4GB)
The PE-Address Space Fragmentation  can be 
overcome by:

Using the SoCDMUU G_move Command (pointers 
problems)
Replicate the physical address space

* A typical global on-chip memory size for billion transistor multiprocessor SoC
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Atalanta Support for the SocDMMU
New API New Functions

Find a place in the PE address space to which 
to map the allocated memory.

asc_memory_find

Delete a partition and de-allocate memory 
block if required.

asc_partition_delete

Create a partition by requesting memory 
allocation from the SoCDMMU if necessary.

asc_partition_create
DescriptionFunction Name
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Comparison to a Fully Shared-
Memory Multiprocessor System

Bus
Arbiter

SoCDMMU

ARM9

L1 $

ARM9

L1 $

ARM9

L1 $

ARM9

L1 $

Global Memory

Simulation Setup

Simulation was carried out using Mentor Graphics Co-Verification 
Environment (CVE) , the cycle-accurate XRAY sotware
simulator/debugger and Synopsys VCS Verilog simulator
ARM SDT was used for software development



59
FPGAworldFPGAworld 13 September 200713 September 2007 ©Vincent J. Mooney III, 2007

Experiment 1

Global memory of 16MB; Data L1 $ is 64 KB, Instruction 
L1 $ is 64 KB
The ARM runs at 150 MHz.
Accessing the Global Memory costs 5 cycles for the first 
access.
A handheld device that utilizes this SoC can be used for 
OFDM communication as well as other applications 
(MPEG2 video player).
Initially the device runs an MPEG2 video player. When 
the device detects an incoming signal it switches to the 
OFDM receiver. The switching time (which includes the 
time for memory management) should be short or the 
device might lose the incoming message.
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Experiment 1

32 Kbytes
8 Kbytes0.5 Kbytes
32 Kbytes1.5 Kbytes
1.5 Kbytes1500 Kbytes
1 Kbytes5 Kbytes
32 Kbytes500 Kbytes
34 Kbytes2 Kbytes

OFDM ReceiverMPEG-2 Player

• Sequence of Memory Allocations Required
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Experiment 1
Speedup of a single malloc()

8.21X7.92XSpeed up over uClibc malloc()

2.8X3.78XSpeed up over SDT malloc()

199 cycles28 cyclesSoCDMMU allocation

1646 cycles222 cyclesuClib malloc()

559 cycles106 cyclesSDT2.5 embedded malloc()

Execution Time 
(Worst Case)

Execution Time 
(Average Case)
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Experiment 1
Speedup of a single free()

28.42X14.8XSpeed up over uClibc free()

6.64X5.9XSpeed up over SDT free()

28 cycles14 cyclesSocDMMU deallocation

796 cycles208 cyclesuClib free()

186 cycles83 cyclesSDT2.5 embedded free()

Execution Time 
(Worst Case)

Execution Time 
(Average Case)
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Experiment 1
Speedup in transition time

3.9X4851 cycles1244 cyclesWorst Case

4.4X1240 cycles280 cycles Average Case

SpeedupUsing SDT malloc() and free()Using the SOCDMMU

12.46X15502 cycles1244 cyclesWorst Case

9.26X2593 cycles280 cycles Average Case

SpeedupUsing uClibc malloc() and free()Using the SOCDMMU
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Experiment 2
Speedup in Execution Time

Same setup used for Experiment 1
GCC and Glibc were used for development
3 kernels from the SPLASH-2 application suite 
are used

Complex 1D FFT (FFT)
Integer RADIX sort (RADIX)
Blocked LU decomposition (LU)

They were modified to replace all the static 
memory allocations by dynamic ones
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Experiment 2
Speedup in Execution Time

20.38%141491694333RADIX

27.13%101998375988FFT

9.90%31512318307LU

% of E. T. used to Memory 
Management

Memory 
Management E. T. 
(Cycles)

E.T. (Cycles)Benchmark

19.59%96.10%0.99%5505558347RADIX

26.34%97.10%1.07%2951276941FFT

9.44%95.31%0.51%1476288271LU

% 
Reduction in 
Benchmark 
E. T.

% Reduction 
in Time used 
to Manage 
Memory

% of E. T. used 
to Memory 
Management

Memory 
Management 
E. T. 
(Cycles)

E.T. 
(Cycles)

Benchmark

Glibc malloc() & free()

Using the SoCDMMU
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Area Estimation of The SoC

* Using dual-port 6T SRAM Cells..

0.186%SoCDMMU to SoC (%)

0.0186%SoCDMMU w/o memory elements to SoC

160.965M TransistorsSoC (total)

300K TransistorsSoCDMMU (total)

4 x 60K = 240K TransistorsSoCDMMU Address Converters (4)

30K TransistorsSoCDMMU Allocation Table

30K TransistorsSoCDMMU (w/o memory elements)

134.217M TransistorsGlobal On-Chip Memory (16MB)

4 x 6.5M = 26M Transistors*4 L1 Caches (64KB+64KB)

4 x 112K = 448K Transistors4 ARM9TDMI Cores

Number of TransistorsElement
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Area Estimation of The SoC

For this 161 Million transistor chip, the 
SoCDMMU consumes 300K transistors 
(0.186% of 161M) and yields a 4-10X 
speedup in memory allocation/de-allocation
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SoCDMMU Conclusion
We introduced The Two-Level memory management 
hierarchy for multiprocessor SoC
We showed how Level 1 in the hierarchy can be 
implemented using the SoCDMMU
We gave a sample hardware implementation of the 
SoCDMMU
We introduced DX-Gt to automatically 
configure/customize the SoCDMU hardware
We showed how to add the SoCDMMU support to a 
real-time OS
Our Experiments show that using the SoCDMMU
speeds up the application transition time as well as 
the application execution time
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Generation of a Reverse Program

* See thesis by T. Akgul available from http://codesign.ece.gatech.edu
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Experimentation Platform

Background Debug 
Mode (BDM) Interface

PC
Windows 2000 

MBX860
MPC860 processor

4MB DRAM, 2MB Flash 
RTC, four 16-bit timers, watchdog 
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Memory Usage for State 
Saving

354X589X1331471140784336LZW (16KB input data)

112X185X3513916364970LZW (4KB input data)

35X57X98.434255630LZW (1KB input data)

2X2.5X246447676175ADPCM (128KB input data)

2X2.5X123223843088ADPCM (64KB input data)

2X2.5X61611921544ADPCM (32KB input data)

1404X2206X125017550062756883Matrix multiply (400x400)

143X224X12.618012820Matrix multiply (40x40)

14X21X0.172.353.6Matrix multiply (4x4)

55X82X7237397913593389Selection sort (10000 inputs)

27X40X15140656032Selection sort (1000 inputs)

6.3X9X7.546.968.2Selection sort (100 inputs)
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Program Re-execute Approach 
vs. RCG
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Conclusion

Trends
SoCDMMU
Reverse Program Generation
Have fun at FPGAworld 2007!


