
Path-Based Edge Activation for
Dynamic Run-Time Scheduling

Vincent J. Mooney IIIVincent J. Mooney III

Assistant Professor
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA USA

Outline

nn MotivationMotivation
nn Previous WorkPrevious Work
nn PathPath--Based Edge ActivationBased Edge Activation
nn ExampleExample
nn Synthesis FlowSynthesis Flow
nn Experimental ResultsExperimental Results
nn Future WorkFuture Work

Motivation

nn Dynamic HardDynamic Hard--RealReal--Time SystemsTime Systems
nn Previous work by author limited to Previous work by author limited to DAGsDAGs
nn Application examples have control flowApplication examples have control flow
nn Extend runExtend run--time system to handle CDFGtime system to handle CDFG

Robotics Example: Concurrent
Control Laws

singular

Ohold
Law

oh3

oh2

saturate
velocity

find
jacobian

matrix
vector
multiply

1

1
0

0

Previous Work

nn “Scheduling of Conditional Process Graphs “Scheduling of Conditional Process Graphs
for the Synthesis of Embedded Systems,” for the Synthesis of Embedded Systems,”
ElesEles, et. al., DATE, 1998., et. al., DATE, 1998.

nn “Hardware/Software Co“Hardware/Software Co--Design of RunDesign of Run--
Time Systems,” Time Systems,” PhPh.D. thesis, Stanford, .D. thesis, Stanford,
1998.1998.

nn “Hardware/Software Co“Hardware/Software Co--Design of RunDesign of Run--
Time Schedulers for RealTime Schedulers for Real--Time Systems,” Time Systems,”
to appear in Design Automation of to appear in Design Automation of
Embedded Systems.Embedded Systems.

Conditional Process Graphs:
Figure 4 (page 136), Processor pe2

P17P14P11P3

a) Optimal schedule of the path corresponding to D^C^K

P17P15

b) Optimal schedule of the path corresponding to D^C^K’

P17P14P3

c) Adjusted schedule of the path corresponding to D^C^K

P11

P3P11

Conditional Process Graphs

nn Conditionals (e.g., D, C, K) are broadcast to Conditionals (e.g., D, C, K) are broadcast to
all processing elementsall processing elements

nn Activation times (start times) for tasks fixed Activation times (start times) for tasks fixed
based on values of conditionals (or subset of based on values of conditionals (or subset of
conditionals)conditionals)

nn Focus on handling late arriving conditionalsFocus on handling late arriving conditionals
nn In case where all conditionals are ready at In case where all conditionals are ready at

the beginning, the beginning, schedule mergingschedule merging may result may result
in known in known suboptimal suboptimal solutionsolution

Previous Work (author)

RTS.v

done
start

V1done
start

RAM

CPU core1

memory controller

CPU Interfaceint
64

start
done Vn

done
start

Task Control

nnAssociate Associate startstart and and done done event with each taskevent with each task
nnControl of hardware tasksControl of hardware tasks
uu startstart signal (bit)signal (bit)
uudonedone signal (bit)signal (bit)

nnControl of software tasksControl of software tasks
uu startstart vector encapsulates allvector encapsulates all swsw start start eventsevents
uudonedone vector encapsulates allvector encapsulates all swsw donedone eventsevents

Run Time Scheduler Implementation
nnStart with control flow ofStart with control flow of hwhw-- andand swsw--taskstasks
nnHardware implementation:Hardware implementation:
uu put FSM corresponding to the control flowput FSM corresponding to the control flow
tt cycle based semanticscycle based semantics
tt can predictably satisfy hard realcan predictably satisfy hard real--time constraintstime constraints

nnSoftware implementation:Software implementation:
uu preemptive static priority schedulerpreemptive static priority scheduler
tt can execute different threadscan execute different threads
tt keeps track of which threads are suspendedkeeps track of which threads are suspended

uudirect execution of software tasks by ISRdirect execution of software tasks by ISR
tt all all sw sw tasks run to completion (no suspension)tasks run to completion (no suspension)

nnMixed implementation can leverage advantage of Mixed implementation can leverage advantage of
hardware and softwarehardware and software

src

oh0

mvm2

cjd

cg

snk

oh1fk

mvm3

mvm4

mvm1

 x3k f3(t3,x3k)

t3 oh1,snk cjd,snk f3*(t3,x3k) x3k*

oh0 24,020 24,020 oh1,snk

oh1 43,812 43,812 cjd,snk

cjd 35,012 35,012 oh1,snk

∞
∞

∞

X2* = {(oh0,oh1,snk),(oh1,cjd,snk),
(cjd,oh1,snk)}

Constructive Heuristic
on DAG

NEVER =
{oh0,oh1,cjd}

src

oh0

mvm2

cjd

cg

snk

oh1fk

mvm3

mvm4

mvm1

Final Result:

oh0 -- priority 1
cjd -- priority 2
oh1 -- priority 3

WCET: 39,012

Constructive Heuristic
Scheduling Algorithm:

Result

Path-Based Edge Activation

nn Extend scheduling to handle CDFG, not just DAGExtend scheduling to handle CDFG, not just DAG
nn Conditional edgesConditional edges
uu active only if a particular path chosenactive only if a particular path chosen
uu a path is defined by a set of values of conditional a path is defined by a set of values of conditional

choices in the CDFGchoices in the CDFG
nn For each path, insert conditional edges to minimize For each path, insert conditional edges to minimize

WCETWCET
uu assumption: conditional values evaluated early assumption: conditional values evaluated early

enough for all conditional edge insertionsenough for all conditional edge insertions

src

oh0

cg

cjd

mvm

snk

oh1

fk

task hw/sw wcet(cycles)
----- ---------- ---------------
cg hw 11,000
oh0 sw 2,554
oh1 sw 20,581
fk hw 11,500
cjd sw 14,878
mvm hw 4,400

NEVER = {oh0, oh1, cjd}

c=1
c=1 c=0

c=0

No static order can achieve better than a WCET of 49,013

Example

Centralized Control

nn Done signals arrive to hardware runDone signals arrive to hardware run--time time
scheduler (no broadcast)scheduler (no broadcast)

nn Dynamic ordering of software tasks must be Dynamic ordering of software tasks must be
done by hardware rundone by hardware run--time schedulertime scheduler

nn Use Use hardwarehardware--driven software executiondriven software execution
nn ISR executes a software taskISR executes a software task
uu advadv.: fast.: fast
uudisadvdisadv.: software tasks not .: software tasks not interruptableinterruptable

Scheduling Assumptions
nnA CDFG represents the set of tasksA CDFG represents the set of tasks
uu limited number of pathslimited number of paths

nnOne rate constraint for the graphOne rate constraint for the graph
nnA NEVER set specifies mutually exclusiveA NEVER set specifies mutually exclusive swsw--taskstasks
nnEachEach swsw--task, once started, runs to completiontask, once started, runs to completion
uu limits solution spacelimits solution space

nnHwHw--swsw communication accounted forcommunication accounted for
uu in task WCETin task WCET
uu as a separate taskas a separate task

nn Interrupts come only from theInterrupts come only from the hwhw runrun--timetime schedsched..

src

oh0

cg

cjd

mvm

snk

oh1

fk

c=1
c=1 c=0

c=0

c=0
c=1

c=1

CDFG

src

oh0

cg

cjd

mvm

snk

oh1

fk

c=1
c=1 c=0

c=0

c=0
c=1

c=1

src

oh0

cjd

mvm

snk

oh1

fk

c=1
c=1

c=1

c=1

case: c=1 CDFG

WCET = 38,013

src

oh0

cg

cjd

mvm

snk

oh1

fk

c=1
c=1 c=0

c=0

c=0
c=1

c=1

src

oh0

cg

cjd

mvm

snk

oh1 c=0
c=0

c=0

CDFG case: c=0

WCET = 39,859

src

oh0

cg

cjd

mvm

snk

oh1

fk

c=1
c=1 c=0

c=0

c=0
c=1

c=1

WCET of 39,859 achievable with dynamic order

case: c=1 CDFG case: c=0

src

oh0

cjd

mvm

snk

oh1

fk

c=1
c=1

c=1

c=1

src

oh0

cg

cjd

mvm

snk

oh1 c=0
c=0

c=0

Algorithm

Solve_order(CDFG,NEVER)
beginmodule
foreach path determined by a unique set of conditional values
begin
DAG = subset of CDFG determined by path
Schedule DAG using constructive heuristic scheduling
Add conditional edges to enforce DAG schedule

end
endmodule

Tool Flow

behavioral Verilog
C

constraints

Fifos,
RAM,
etc.

Mp core,
RAM size,

etc.

RTS.c *.c

RAMRTS.vV1

behavioral Verilog RTL Verilog

BC DCBC

System Specification

Interface Generation Serra2 Run-Time
Scheduler Synthesis

InterfaceVn

wc
et

Cinderella-M
wcet

SERRA2 Run-Time Scheduler
Synthesis Tool

constraints behavioral Verilog C

relocatable assembly

RTS assembly code

cfe

cdfg

RTS control FSM
in RTL Verilog

sw-tasks
assembly code

Thalia2

Diego
GCC

linker

dataflow analysis

Key:
= data
= tool
= tool

Clara2
ISR template

Cind-M
wcet

BC

wcet

System Specification

conditional
edges

Example and Experimental Results

nnHwHw--tasks tasks
written inwritten in
VerilogVerilog for for
BC, use LSI BC, use LSI
10K library10K library
nnVerilogVerilog model model

of MIPS core of MIPS core
with interruptswith interrupts
nn19% decrease 19% decrease

in WCET: in WCET:
39859 (49013)39859 (49013)
nnUsed VCSUsed VCSTMTM

to verify resultto verify result

Softwa re
Task

Line s
of C

Line s
Asmbly

WCET

cjd 286 1177 14878
oh0 90 237 2554
oh1 693 3263 20581
int-se r-rtn N/A 26 20

Hw-task # Lines V Area WCET
mvm 629 33645 4400
fk 2362 42168 11500
cg 2897 59587 11000
rtsched-hw 484 413 99701

Future Work

nn Extend to handle late arriving conditionalsExtend to handle late arriving conditionals
nn Extend to allow Extend to allow interruptable interruptable software taskssoftware tasks

