
© Georgia Tech, 2001. Confidential & Proprietary

Adaptability, Extensibility, and Flexibility in
Real-Time Operating Systems:

the Georgia Tech DRTOS

Pramote Kuacharoen, Tankut Akgul,
Professor Vincent Mooney and Professor Vijay K. Madisetti

{pramote,tankut,mooney,vkm}@ece.gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

This research is funded by the State of Georgia under the Yamacraw initiative and by NSF.

July 31, 2001

n Introduction
n Related Work
n Technical Approach
n Experiments and Results
n Conclusion

Outline

Georgia Institute of Technology 2

Embedded Systems

Introduction (continued)

Hardware

RTOS

Application

CPU Memory I/O

Task1 Task2 Task3

Application 1

Task1 Task2 Task3

Application 2

Core Time SchedulerTask

Georgia Institute of Technology 3

n SPIN (University of Washington) 1996
n A general purpose operating system that provides

extensibility, safety and good performance.
n SPIN OS consists of a set of extension services and core

system services that execute within the kernel’s virtual
address space

n Extensions can be loaded into kernel at any time. Once
loaded, they integrate themselves into the existing
infrastructure and provide system service specific to the
application that require them.

n User space and kernel space are kept separate.
n Single processor.
n The core system services cannot be changed.

Related Work

Georgia Institute of Technology 4

n Exokernel (MIT) 1997
n General purpose operating system.
n Exokernel’s sole function is to allocate, de-allocate, and

multiplex physical resources in a secure way (very good
protection is provided).

n The lower level interface allows flexible user-level
implementations of traditionally rigidly defined OS
services.

n Single processor.
n The core kernel code cannot be changed.

Related Work (continued)

Georgia Institute of Technology 5

n Unsafe or not convenient to reboot
n Adaptability and Flexibility

n Example: interrupt handling
n Case 1: very fast handling of interrupts (always stop

current interrupt)
n Case 2: non-interruption of a particular interrupt

n There may be no way to predict all the additional cases
which could come up

Why is it important to be able to
dynamically change the core?

Georgia Institute of Technology 6

Embedded Systems

DRTOS Technical Approach

Georgia Institute of Technology 7

Hardware

RTOS

Application

CPU Memory I/O

Core Time Task

Task1 Task2 Task3

Application 1

Task1 Task2 Task3

Application 2

Priority-Based Scheduler Earliest-Deadline Scheduler

DRTOS Technical Approach (continued)

Georgia Institute of Technology 8

Kernel Module

In
st

ru
ct

io
n

s

Executable code

Module variables

D
at

a

APIs

Core Module

In
st

r

Executable code

Module variables

System APIs
 pCore
 pTime
 pTask Manager
 pScheduler D

at
a

APIs

Task Manager Module

In
st

r

Executable code

Module variables
pSystem APIs

D
at

a

APIs
createTask

Module Installation

DRTOS Technical Approach (continued)

p T a s k D a t a

C o r e M o d u l e
In

st
r

E x e c u t a b l e c o d e

M o d u l e v a r i a b l e s

S y s t e m A P I s
 p C o r e
 p T im e
 p T a s k M a n a g e r
 p S c h e d u l e r D

at
a

A P I s

T a s k M a n a g e r M o d u l e

In
st

r

E x e c u t a b l e c o d e

M o d u l e v a r i a b l e s
p S y s t e m A P I s

D
at

a

A P I s
c r e a t e T a s k

S c h e d u l e r M o d u l e

In
st

r

E x e c u t a b l e c o d e

M o d u l e v a r i a b l e s
p S y s t e m A P I s

D
at

a
A P I s
s c h e d u l e

Georgia Institute of Technology 9

APIs Invocation

DRTOS Technical Approach (continued)

Georgia Institute of Technology 10

Updating Scheduler module

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler D

at
a

APIs

 Round Robin

In
st

r

Executable code

Module variables
System

D
at

a

APIs
schedule

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler D

at
a

APIs

 Round Robin

In
st

r

Executable code

Module variables
System

D
at

a

APIs
schedule

 Priority-based

In
st

r
Executable code

Module variables
System

D
at

a

APIs
schedule

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler D

at
a

APIs

 Round Robin

In
st

r

Executable code

Module variables
System

D
at

a

APIs
schedule

 Priority-based

In
st

r
Executable code

Module variables
System

D
at

a

APIs
schedule

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler D

at
a

APIs

 Round Robin

In
st

r

Executable code

Module variables
System

D
at

a

APIs
schedule

 Priority-based

In
st

r
Executable code

Module variables
System

D
at

a

APIs
schedule

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler D

at
a

APIs

 Priority-based

In
st

r
Executable code

Module variables
System

D
at

a

APIs
schedule

Load a priority-based
scheduler

Link the priority-based
scheduler to the core

module

Unlink the round robin
scheduler

The round robin
scheduler can be deleted

from the memory

n Function pointers are used for APIs
n Invocation of a scheduler API

n System *pSys = (System *) pTaskData->pSystem;
n SchedulerMethod *scheduler =

(SchedulerMethod *) pSys->scheduler;
n scheduler->schedule(pNewTask, TASK_READY);

n Updating Core module
n Either (1) System variable must either be in the same

location as before
n Or (2) each module must be notified when Core module

is updated (all modules’ System variables must point to
the new location for the System variable).

DRTOS Technical Approach (continued)

Georgia Institute of Technology 11

n Updating Loader module
n The current loader module is called to update to the new

loader module.
n The initModule() function of the new loader module is

invoked.
n The return address from the initModule() function must

be adjusted to the location which calls the update API of
the old loader module by clearing the stack to ignore the
call from the old loader module.

n The old loader module can be deleted from the memory.

DRTOS Technical Approach (continued)

Georgia Institute of Technology 12

DRTOS Technical Approach (continued)

Georgia Institute of Technology 13

Updating Loader module

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler
 Loader

D
at

a

APIs

 Older Loader

In
st

r

Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler
 Loader

D
at

a

APIs

 Older Loader

In
st

r

Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

 New Loader

In
st

r
Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler
 Loader

D
at

a

APIs

 Older Loader

In
st

r

Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

 New Loader

In
st

r
Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler
 Loader

D
at

a

APIs

 Older Loader

In
st

r

Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

 New Loader

In
st

r
Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

 Core Module

In
st

r

Executable code

Module variables

System APIs
 Core
 Time
 Task Manager
 Scheduler
 Loader

D
at

a

APIs

 New Loader

In
st

r
Executable code

Module variables
System

D
at

a

APIs
initModule()
loadModule()

Top of Stack

After Calling
loadModule

OS Stack

Top of Stack

After Calling
initModule

OS Stack

Top of Stack

After adjusting the
return address

OS Stack

Experiment 1

Serial to
Parallel

IDFT &
Cyclic
Prefix

X(m) X(n)

Tx

M P C 7 5 0

M P C 7 5 0 *
•D y n a m i c R T O S S e r v i c e s
•K e r n e l S w i t c h i n g C o d e

S t o r a g e D e v i c e

 M e m o r y

M P C 7 5 0

M P C 7 5 0

In
terru

p
t

K e r n e l M o d u l e s

I n te r rupt
S e r v i c e

R o u t i n e s

* : P r o c e s s o r R u n n i n g K e r n e l M a n a g e m e n t P r o c e s s

Georgia Institute of Technology 14

VCS Seamless
CVE XRAY

Simulation Environment OFDM Transmitter

n Initially running VUI code
n uses round-robin scheduler

n Want to change to OFDM code
n install new I/O code
n install new priority scheduler code

n OFDM Code Size: 1600 lines of code
n Time to load (VUI still operational): 4 kbytes x 2

cycles/byte
n Time to switch to new DRTOS code: 60 cycles

Experiment 1 (continued)

Georgia Institute of Technology 15

Experiment 2

Georgia Institute of Technology 16

MBX860 JTAG CrossView

Simulation Environment
Switching between schedulers

Priority-based Round Robin

n Three tasks
n DRTOS uses priority-based scheduler

n Change to round robin scheduler
n install round robin scheduler code
n migrate tasks from the previous scheduler

n Round Robin Code Size: 200 lines of code

n Switching Time: 60 + 8n assembly instructions
(n = number of tasks currently in the system, the
scheduler needs to poll each task to get its
handle)

Experiment 2 (continued)

Georgia Institute of Technology 17

Experiment 2 (continued)

Georgia Institute of Technology 18

Priority-based scheduler Round robin scheduler

n Existing real-time operating systems not fully
dynamic

n The needs of a new real-time operating system
architecture to support emerging applications

n Our approach: the Georgia Tech DRTOS
n Initial experiments and results

Conclusion

Georgia Institute of Technology 19

