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n SPIN (University of Washington) 1996
n A general purpose operating system that provides 

extensibility, safety and good performance.
n SPIN OS consists of a set of extension services and core 

system services that execute within the kernel’s virtual 
address space

n Extensions can be loaded into kernel at any time. Once 
loaded, they integrate themselves into the existing 
infrastructure and provide system service specific to the 
application that require them.

n User space and kernel space are kept separate.
n Single processor.
n The core system services cannot be changed.

Related Work
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n Exokernel (MIT) 1997
n General purpose operating system. 
n Exokernel’s sole function is to allocate, de-allocate, and 

multiplex physical resources in a secure way (very good 
protection is provided).

n The lower level interface allows flexible user-level 
implementations of traditionally rigidly defined OS 
services.

n Single processor.
n The core kernel code cannot be changed.

Related Work (continued)
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n Unsafe or not convenient to reboot
n Adaptability and Flexibility

n Example: interrupt handling
n Case 1: very fast handling of interrupts (always stop 

current interrupt)
n Case 2: non-interruption of a particular interrupt

n There may be no way to predict all the additional cases 
which could come up

Why is it important to be able to       
dynamically change the core?
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Embedded Systems

DRTOS Technical Approach

Georgia Institute of Technology                                 7

Hardware

RTOS

Application

CPU Memory I/O

Core Time Task

Task1 Task2 Task3

Application 1

Task1 Task2 Task3

Application 2

Priority-Based Scheduler Earliest-Deadline Scheduler



DRTOS Technical Approach (continued)

Georgia Institute of Technology            8

Kernel Module

In
st

ru
ct

io
n

s

Executable code

Module variables

D
at

a

APIs

 

Core Module 

In
st

r 

Executable code 

Module variables 
 
System APIs 
   pCore 
   pTime 
   pTask Manager 
   pScheduler D

at
a 

APIs 

 

Task Manager Module 

In
st

r 

Executable code 

Module variables 
pSystem APIs 

D
at

a 

APIs 
createTask 

 

Module Installation



DRTOS Technical Approach (continued)
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DRTOS Technical Approach (continued)
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n Function pointers are used for APIs
n Invocation of a scheduler API

n System *pSys = (System *) pTaskData->pSystem;
n SchedulerMethod *scheduler =                 

(SchedulerMethod *) pSys->scheduler;  
n scheduler->schedule(pNewTask, TASK_READY);

n Updating Core module
n Either (1) System variable must either be in the same 

location as before
n Or (2) each module must be notified when Core module 

is updated (all modules’ System variables must point to 
the new location for the System variable).

DRTOS Technical Approach (continued)
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n Updating Loader module
n The current loader module is called to update to the new 

loader module.
n The initModule() function of the new loader module is 

invoked.
n The return address from the initModule() function must 

be adjusted to the location which calls the update API of 
the old loader module by clearing the stack to ignore the 
call from the old loader module.

n The old loader module can be deleted from the memory.

DRTOS Technical Approach (continued)
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DRTOS Technical Approach (continued)
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n Initially running VUI code
n uses round-robin scheduler

n Want to change to OFDM code
n install new I/O code
n install new priority scheduler code

n OFDM Code Size: 1600 lines of code
n Time to load (VUI still operational): 4 kbytes x 2 

cycles/byte
n Time to switch to new DRTOS code: 60 cycles

Experiment 1 (continued)
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Experiment 2
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n Three tasks
n DRTOS uses priority-based scheduler

n Change to round robin scheduler
n install round robin scheduler code
n migrate tasks from the previous scheduler

n Round Robin Code Size: 200 lines of code

n Switching Time: 60 + 8n assembly instructions 
(n = number of tasks currently in the system, the 
scheduler needs to poll each task to get its 
handle)

Experiment 2 (continued)

Georgia Institute of Technology            17



Experiment 2 (continued)
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n Existing real-time operating systems not fully 
dynamic

n The needs of a new real-time operating system 
architecture to support emerging applications

n Our approach: the Georgia Tech DRTOS
n Initial experiments and results

Conclusion
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