
A Dynamic Memory Management
Unit For Embedded Real-Time

System-on-a-Chip

Mohamed Shalan
Vincent Mooney

School of Electrical and Computer Engineering
Georgia Institute of Technology

March 7th, 2001 2

Outline

n Introduction.
n Programming Model.
n The SoCDMMU HW.
n Experiments and Results.
n RTOS Support.
n Current Work.
n Conclusion.

March 7th, 2001 3

Introduction
n In few years, we will have chips with one-

billion transistors.
n Chips will no longer be a stand-alone system

components but “Silicon boards”.
n A typical Chip will consist of multiple PE’s of

various types, large global on-chip memory,
analog components, and network interfaces.

March 7th, 2001 4

System-on-a-Chip (SoC)

n This architecture is suitable for Embedded Multimedia
applications, which require great processing power
and large volume data management.

March 7th, 2001 5

SoC
n The existence of Global on-chip memory,

arises the need for an efficient way to
dynamically allocate it among the PE’s.

March 7th, 2001 6

Problem

n How to deal with the allocation of the large
global on-chip memory between the PE's. ?

March 7th, 2001 7

Solution 1
n Custom Memory Configuration (Static)

n Pros:
n Easy.
n Deterministic.

n Cons:
n Inefficient memory utilization.
n System modification after implementation is very

difficult if not impossible.

March 7th, 2001 8

Solution 2

n Shared memory multiprocessor (Dynamic)
n Pros

n Flexible.
n Efficient memory utilization.

n Cons
n Worst case execution time is very high if not not

deterministic.

March 7th, 2001 9

SoCDMMU
n The SoC Dynamic Memory Management Unit

(SoCDMMU) is a Hardware Unit, to be a part
of the SoC, that deals with the memory
allocation/de-allocation among the PE’s.

n The SoCDMMU allows a fast and deterministic
dynamic way to allocate/de-allocate the
Global Memory among the PE’s.

March 7th, 2001 10

Outline

n Introduction.
n Programming Model.
n The SoCDMMU HW.
n Experiments and Results.

n RTOS Support.
n Current Work.
n Conclusion.

March 7th, 2001 11

Programming Model

n Assumptions.
n Two-Level memory management.
n Types of allocations.

March 7th, 2001 12

Assumptions
§ The Global memory is divided into a fixed number

of equally sized blocks (e.g. 16KB).
§ The Global Memory allocation done by the

SoCDMMU will be referred to as G_allocation.
§ The Global Memory de-allocation done by the

SoCDMMU will be referred to as G_de-allocation.
§ The PE can G_allocate one or more than one

block.
§ Different PE’s can issue the G_allocation/ G_de-

allocation commands simultaneously

March 7th, 2001 13

Assumptions

§ Each memory block has
one physical address and
one or more virtual
addresses. The block
virtual address may differ
from PE to another.

§ The block virtual address
will be referred to as PE-
address.

March 7th, 2001 14

Two-Level Memory Management

§ There is an OS that runs on each PE.
§ The SoCDMMU manages the memory between the

PE’s.
§ The OS on each PE manages the memory between

the processes that run on that PE (Level 1).
§ The process requests the memory allocation from the

OS. If there in not enough memory, the OS requests
memory allocation from the SoCDMMU (Level 2).

March 7th, 2001 15

Types of Memory Allocation
n Exclusive.

• Only the the owner can access it. No other PE can
access it.

n Read/Write.
• The owner can read/write to it. Other PE’s can

read from it if it G_allocated it as read only.

n Read Only.
• The PE G_allocates the memory for read only.

Other PE G_allocated it as Read/Write.

March 7th, 2001 16

Outline

n Introduction.
n Programming Model.
n The SoCDMMU HW.
n Experiments and Results.

n RTOS Support.
n Current Work.
n Conclusion.

March 7th, 2001 17

The SoCDMMU Hardware

n PE-SoCDMMU Interface.
n PE-SoCDMMU Commands.
n SoCDMMU Architecture

n Basic SoCDMMU.
n Address Converter.

March 7th, 2001 18

PE-SoCDMMU Interface

PEn

Cache

PE1

Cache

PE2

Cache

.

Global Memory

DMMU

...

March 7th, 2001 19

SoCDMMU Commands

March 7th, 2001 20

The SoCDMMU Architecture

March 7th, 2001 22

Basic SoCDMMU

March 7th, 2001 23

Address Converter

March 7th, 2001 24

Outline

n Introduction.
n Programming Model.
n The SoCDMMU HW.
n Experiments and Results.

n RTOS Support.
n Current Work.
n Conclusion.

March 7th, 2001 25

Experiments and Results

n SoCDMMU Synthesis.
n SoCDMMU Execution Times.
n Comparison with uC implementation

March 7th, 2001 26

Synthesis

§ The SoCDMMU was modeled using Verilog at
the RTL level. It was successfully synthesized
using SYNOPSYSTM Design Compiler. By using
AMI 0.5 micron library we got the following
results.

March 7th, 2001 27

Execution Times

§ Wireless application with voice
interface.

§ Global Memory 16MB.

§ Allocation Block Size is 64KB.

§ Allocation Vector is 256 bit

§ Allocation Table has 256
entries.

March 7th, 2001 28

Execution Times

March 7th, 2001 29

SoCDMMU vs. uC Implementation

§ To demonstrate the importance of building the
SoCDMMU as a custom logic, we implemented the
same functionality in software runs on PIC uC.

§ Both of the custom SoCDMMU and the uC
Implementation ran at 100Mhz.

§ The uC code was developed using MPASM.
§ The uC software is about 500 lines.

March 7th, 2001 30

Outline

n Introduction.
n Programming Model.
n The SoCDMMU HW.
n Experiments and Results.
n RTOS Support.
n Current Work.
n Conclusion.

March 7th, 2001 31

RTOS Support

n Introduction.
n uC/OS II Memory Management.

n Overview.
n API Functions.
n Data Structures.
n Example.

n uC/OS II Support for the SocDMMU

March 7th, 2001 32

Introduction
n Conventional memory allocation algorithms (e.g.,

Buddy-heap) are not suitable for Real-Time systems
because they are not deterministic and/or the WCET
is high.

n This is mainly because of memory fragmentation and
compaction.

n An RTOS uses a different approach to make the
allocation deterministic.

n An RTOS usually divides the memory into fixed-sized
allocation units and any task can allocate only one
unit at a time.

March 7th, 2001 33

uC/OS II Memory Management
Overview

n uC/OS II allows tasks to
obtain fixed-sized memory
blocks from partitions made
of a contiguous memory
area.

n Allocation and de-allocation
of these memory blocks are
done in a constant time.Partition 1

Partition 2

Partition 3
block

March 7th, 2001 34

uC/OS II Memory Management
API Functions

n OSMemCreate
n Is used to create a partition.
n It needs a pointer to a contiguous Memory

partition (static array).
n On success, it returns pointer to the allocated

memory control block.
n OSMemGet

n Is used to obtain memory block from a partition.
n OsMemPut

n Return back a memory block to its partition.

March 7th, 2001 35

uC/OS II Memory Management
DATA Structures

n The free blocks in each memory partition are linked
together as a linked list.

n Each partition has a Memory Control Block (OS_MEM)
that stores:
n Partition base address.
n Pointer to the free list.
n No. of free blocks in the partition.
n Block size of this partition.

March 7th, 2001 36

uC/OS II Memory Management
Example
OS_MEM *Buf;
Unsigned char Part[100][32];
.
.
void main(void)
{

INT8U err;
.
Buf=OSMemCreate(Part,100,32,&err);
.

}

Void Task1()
{

INT8U *x, err;
.
x=OSMemeGet(Buf, &err);
.
OSMemPut(Buf,x);
.

}

March 7th, 2001 37

uC/OS II Support for the SocDMMU
Objectives

n Add Dynamic Memory Management to uC/OS II.
n Use the same Memory Management API Functions.
n Keep the Memory Management Deterministic.

March 7th, 2001 38

uC/OS II Support for the SocDMMU

n The SoCDMMU needs to know where the allocated
physical memory will be placed in the PE address
space.

n The PE address space is much larger than the
physical address space (64 MB vs. 4GB).

n The PE-Address Space (VA) Fragmentation can be
overcome by:
n Using the SoCDMUU “Move” Command.
n Replicate the physical address space.

March 7th, 2001 39

uC/OS II Support for the SocDMMU
Physical Address Space Replication (1)

Physical Memory
Address Space

PE-Address
Space

March 7th, 2001 40

uC/OS II Support for the SocDMMU
Physical Address Space Replication (2)

n This mirroring is useful to overco-
me the memory fragmentation.

n The first copy may be used to
allocate only one block, the 2nd for
allocating 2 contiguous blocks,
etc..

n Also another copy may be used as
a heap for different sizes allocation
other than the above contiguous
sizes.

n This heap can be compacted using
the SoCDMMU “MOVE” command.

PE Virtual
Address Space

Physical Memory
Address Space

March 7th, 2001 41

uC/OS II Support for the SocDMMU
New DATA Structures

n Free Blocks Array
Array of linked list. Each linked list stores the free memory
blocks (e.g., for the 2nd mirror the linked list stores the free
memory chunks [of 2 blocks]).

n SoCDMMU Memory Control Table
n Has an entry for each memory allocation done by

the SoCDMMU.
n Each entry has 2 fields

n Starting VA.
n Size (no. of blocks).
n Allocation Type.
n Pointer to the next allocation of the same type.

March 7th, 2001 42

uC/OS II Support for the SocDMMU
New API Functions (Level 2)

n DMMUMemFind(size)
n Returns pointer to a location in the VA Space (PE-Address Space).

n DMMUMemRelease(pointer to an SoCDMMU Memory
Control Block entry)

n DMMUMemGet(size, VA, mode,sw id)
n Returns pointer to an entry in the SoCDMMU Memory Control

Block.

n DMMUMemPut(pointer to SoCDMMU Memory Control
Block entry)

March 7th, 2001 43

uC/OS II Support for the SocDMMU
New API Functions

n OSMemRelease
n It does the opposite of the OSMemCreate function.
n It may call the DMMUMemPut to de_allocate the

physical memory blocks allocated by OSMemCreate.

March 7th, 2001 44

uC/OS II Support for the SocDMMU
Modified API Functions

n OSMemCreate(no. of blocks,block size
,mode,SW_id)

n No need for static allocation.
n It may call the DMMUMemGet function to allocate no of

physical memory blocks.

March 7th, 2001 45

uC/OS II Support for the SocDMMU
Example (1)

n DSP1 and DSP2 are used to perform the Orthogonal Frequency
Division Multiplexing (OFDM).

n DSP1 reads the incoming data from the FIFO and performs FFT,
then it passes it to DSP2 through the shared memory buffer 1.

n DSP2 performs the rest of the OFDM processing and then writes
the modulated data into memory buffer 2.

March 7th, 2001 46

uC/OS II Support for the SocDMMU
Example (1)

#define BUF1 10
OS_MEM *Buf;
INT8U *x;
.
.
buf=OSMemCreate(1024,1,BUF1,RW);
x=OSMemGet(buf);

DSP1

#define BUF1 10
OS_MEM *buf1,*buf2;
INT8U *x,*y;
.
.
buf1=OSMemCreate(1024,1,BUF1,RO);
x=OSMemGet(buf1);
buf2=OSMemCreate(1024,1,BUF1,EX);
y=OSMemGet(buf2);

DSP2

March 7th, 2001 47

Outline

n Introduction.
n Programming Model.
n The SoCDMMU HW.
n Experiments and Results.
n RTOS Support.
n Current Work.
n Conclusion.

March 7th, 2001 48

Current Work
n Extend the SoCDMMU to support G_alloc_rw of the

same block by multiple PE’s.
n The SoCDMMU may configure the level1 caches to un-cache

certain address spaces.

n Carrying out a study comparing our multiprocessor
SoC to a SoCDMMU with fully shared memory
multiprocessor SoC (e.g., Hydra).
n Seamless co-simulation of 4 ARM9TDMI cores.
n ARM AMBA? No
n New bus agent, bus arbiter, cache coherency controller, and

snooping controller? Yes

March 7th, 2001 49

Outline

n Introduction.
n Programming Model.
n The SoCDMMU HW.
n Experiments and Results.

n RTOS Support.
n Current Work.
n Conclusion.

March 7th, 2001 50

Conclusion
n We Described a new approach to handle on-

chip memory allocation/de-allocation among
PE’s on SoC. Also, we showed how to extend
the ucos-ii to support the SoCDMMU.

n Our approach is based on HW SoCDMMU that
allows a dynamic, fast way to allocate/de-
allocate the on-chip memory.

March 7th, 2001 51

Conclusion
n Thus, this approach fits in the gap between general-

purpose fully shared memory multiprocessor SoCs
and application specific SoC designs with custom

memory configurations.

March 7th, 2001 52

Acknowledgement

n We would like to acknowledge software
donations from Mentor Graphics and
Synopsys as well as hardware donations
from Sun and Intel.

March 7th, 2001 53

Questions

