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Introduction
n In few years, we will have chips with one-

billion transistors.
n Chips will no longer be a stand-alone system 

components but “Silicon boards”.
n A typical Chip will consist of multiple PE’s of 

various types, large global on-chip memory, 
analog components, and network interfaces.
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System-on-a-Chip (SoC)

n This architecture is suitable for Embedded Multimedia 
applications, which require great processing power 
and large volume data management.
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SoC
n The existence of Global on-chip memory, 

arises the need for an efficient way to 
dynamically allocate it among the PE’s.
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Problem

n How to deal with the allocation of the large 
global on-chip memory between the PE's. ?
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Solution 1
n Custom Memory Configuration (Static) 

n Pros: 
n Easy.
n Deterministic.

n Cons: 
n Inefficient memory utilization. 
n System modification after implementation is very 

difficult if not impossible.
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Solution 2

n Shared memory multiprocessor (Dynamic)
n Pros

n Flexible.
n Efficient memory utilization.

n Cons
n Worst case execution time is very high if not not 

deterministic.
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SoCDMMU
n The SoC Dynamic Memory Management Unit 

(SoCDMMU) is a Hardware Unit, to be a part 
of the SoC, that deals with the memory 
allocation/de-allocation among the PE’s.

n The SoCDMMU allows a fast and deterministic 
dynamic way to allocate/de-allocate the 
Global Memory among the PE’s.
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Programming Model

n Assumptions.
n Two-Level memory management.
n Types of allocations.
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Assumptions
§ The Global memory is divided into a fixed number 

of equally sized blocks ( e.g. 16KB).
§ The Global Memory allocation done by the 

SoCDMMU will be referred to as G_allocation.
§ The Global Memory de-allocation done by the 

SoCDMMU will be referred to as G_de-allocation.
§ The PE can G_allocate one or more than one 

block.
§ Different PE’s can issue the G_allocation/ G_de-

allocation commands simultaneously
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Assumptions

§ Each memory block has 
one physical address and 
one or more virtual 
addresses. The block 
virtual address may differ 
from PE to another.

§ The block virtual address 
will be referred to as PE-
address.
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Two-Level Memory Management

§ There is an OS that runs on each PE.
§ The SoCDMMU manages the memory between the 

PE’s.
§ The OS on each PE manages the memory between 

the processes that run on that PE (Level 1).
§ The process requests the memory allocation from the 

OS. If there in not enough memory, the OS requests 
memory allocation from the SoCDMMU (Level 2).
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Types of Memory Allocation
n Exclusive.

• Only the the owner can access it. No other PE can 
access it.

n Read/Write.
• The owner can read/write to it. Other PE’s can 

read from it if it G_allocated it as read only.

n Read Only.
• The PE G_allocates the memory for read only. 

Other PE G_allocated it as Read/Write.
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The SoCDMMU Hardware

n PE-SoCDMMU Interface.
n PE-SoCDMMU Commands.
n SoCDMMU Architecture
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n Address Converter.
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PE-SoCDMMU Interface
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SoCDMMU Commands
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The SoCDMMU Architecture
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Basic SoCDMMU
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Address Converter
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Experiments and Results

n SoCDMMU Synthesis.
n SoCDMMU Execution Times.
n Comparison with uC implementation



March 7th, 2001 26

Synthesis

§ The SoCDMMU was modeled using Verilog at 
the RTL level. It was successfully synthesized 
using SYNOPSYSTM Design Compiler. By using 
AMI 0.5 micron library we got the following 
results.
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Execution Times

§ Wireless application with voice 
interface.

§ Global Memory 16MB.

§ Allocation Block Size is 64KB.

§ Allocation Vector is 256 bit

§ Allocation Table has 256 
entries.
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Execution Times
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SoCDMMU vs. uC Implementation

§ To demonstrate the importance of building the 
SoCDMMU as a custom logic, we implemented the 
same functionality in software runs on PIC uC.

§ Both of the custom SoCDMMU and the uC 
Implementation ran at 100Mhz.

§ The uC code was developed using MPASM.
§ The uC software is about 500 lines.
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RTOS Support

n Introduction.
n uC/OS II Memory Management.

n Overview.
n API Functions.
n Data Structures.
n Example.

n uC/OS II Support for the SocDMMU
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Introduction
n Conventional memory allocation algorithms (e.g., 

Buddy-heap) are not suitable for Real-Time systems 
because they are not deterministic and/or the WCET 
is high.

n This is mainly because of memory fragmentation and 
compaction.

n An RTOS uses a different approach to make the 
allocation deterministic.

n An RTOS usually divides the memory into fixed-sized 
allocation units and any task can allocate only one 
unit at a time.
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uC/OS II Memory Management
Overview

n uC/OS II allows tasks to 
obtain fixed-sized memory 
blocks from partitions made 
of a contiguous memory 
area.

n Allocation and de-allocation 
of these memory blocks are 
done in a constant time.Partition 1

Partition 2

Partition 3
block
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uC/OS II Memory Management
API Functions

n OSMemCreate
n Is used to create a partition.
n It needs a pointer to a contiguous Memory 

partition (static array).
n On success, it returns pointer to the allocated 

memory control block.
n OSMemGet

n Is used to obtain memory block from a partition.
n OsMemPut

n Return back a memory block to its partition.



March 7th, 2001 35

uC/OS II Memory Management
DATA Structures

n The free blocks in each memory partition are linked 
together as a linked list.

n Each partition has a Memory Control Block (OS_MEM) 
that stores:
n Partition base address.
n Pointer to the free list.
n No. of free blocks in the partition.
n Block size of this partition.
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uC/OS II Memory Management
Example
OS_MEM *Buf;
Unsigned char Part[100][32];
.
.
void main(void)
{

INT8U err;
.
Buf=OSMemCreate(Part,100,32,&err);
.

}

Void Task1()
{

INT8U *x, err;
.
x=OSMemeGet(Buf, &err);
.
OSMemPut(Buf,x);
.

}



March 7th, 2001 37

uC/OS II Support for the SocDMMU
Objectives

n Add Dynamic Memory Management to uC/OS II.
n Use the same Memory Management API Functions.
n Keep the Memory Management Deterministic.
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uC/OS II Support for the SocDMMU

n The SoCDMMU needs to know where the allocated 
physical memory will be placed in the PE address 
space.

n The PE address space is much larger than the 
physical address space (64 MB vs. 4GB).

n The PE-Address Space (VA) Fragmentation  can be 
overcome by:
n Using the SoCDMUU “Move” Command.
n Replicate the physical address space.
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uC/OS II Support for the SocDMMU
Physical Address Space Replication (1)

Physical Memory
Address Space

PE-Address
Space
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uC/OS II Support for the SocDMMU
Physical Address Space Replication (2)

n This mirroring is useful to overco-
me the memory fragmentation.

n The first copy may be used to 
allocate only one block, the 2nd for 
allocating 2 contiguous blocks, 
etc..

n Also another copy may be used as 
a heap for different sizes allocation 
other than the above contiguous 
sizes.

n This heap can be compacted using 
the SoCDMMU “MOVE” command.

PE Virtual 
Address Space

Physical Memory
Address Space
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uC/OS II Support for the SocDMMU
New DATA Structures

n Free Blocks Array
Array of linked list. Each linked list stores the free memory 
blocks (e.g., for the 2nd mirror the linked list stores the free 
memory chunks [of 2 blocks ]).

n SoCDMMU Memory Control Table
n Has an entry for each memory allocation done by 

the SoCDMMU.
n Each entry has 2 fields

n Starting VA.
n Size (no. of blocks).
n Allocation Type.
n Pointer to the next allocation of the same type.



March 7th, 2001 42

uC/OS II Support for the SocDMMU
New API Functions (Level 2)

n DMMUMemFind(size)
n Returns pointer to a location in the VA Space (PE-Address Space).

n DMMUMemRelease(pointer to an SoCDMMU Memory 
Control Block entry)

n DMMUMemGet(size, VA, mode,sw id)
n Returns pointer to an entry  in the SoCDMMU Memory Control 

Block.

n DMMUMemPut(pointer to SoCDMMU Memory Control 
Block entry)
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uC/OS II Support for the SocDMMU
New API Functions

n OSMemRelease
n It does the opposite of the OSMemCreate function.
n It may call the DMMUMemPut to de_allocate the 

physical memory blocks allocated by OSMemCreate.
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uC/OS II Support for the SocDMMU
Modified API Functions

n OSMemCreate(no. of blocks,block size 
,mode,SW_id)

n No need for static allocation.
n It may call the DMMUMemGet function to allocate no of 

physical memory blocks.
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uC/OS II Support for the SocDMMU
Example (1)

n DSP1 and DSP2 are used to perform the Orthogonal Frequency 
Division Multiplexing (OFDM).

n DSP1 reads the incoming data from the FIFO and performs FFT, 
then it passes it to DSP2 through the shared memory buffer 1.

n DSP2 performs the rest of the OFDM processing and then writes 
the modulated data into memory buffer 2. 
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uC/OS II Support for the SocDMMU
Example (1)

#define BUF1 10
OS_MEM *Buf;
INT8U *x;
.
.
buf=OSMemCreate(1024,1,BUF1,RW);
x=OSMemGet(buf);

DSP1

#define BUF1 10
OS_MEM *buf1,*buf2;
INT8U *x,*y;
.
.
buf1=OSMemCreate(1024,1,BUF1,RO);
x=OSMemGet(buf1);
buf2=OSMemCreate(1024,1,BUF1,EX);
y=OSMemGet(buf2);

DSP2
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Current Work
n Extend the SoCDMMU to support G_alloc_rw of the 

same block by multiple PE’s.
n The SoCDMMU may configure the level1 caches to un-cache 

certain address spaces.

n Carrying out a study comparing our multiprocessor 
SoC to a SoCDMMU with fully shared memory 
multiprocessor SoC (e.g., Hydra).
n Seamless co-simulation of 4 ARM9TDMI cores.
n ARM AMBA? No
n New bus agent, bus arbiter, cache coherency controller, and 

snooping controller? Yes
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Conclusion
n We Described a new approach to handle on-

chip memory allocation/de-allocation among 
PE’s on SoC. Also, we showed how to extend 
the ucos-ii to support the SoCDMMU.

n Our approach is based on HW SoCDMMU that 
allows a dynamic, fast way to allocate/de-
allocate the on-chip memory.
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Conclusion
n Thus, this approach fits in the gap between general-

purpose fully shared memory multiprocessor SoCs
and application specific SoC designs with custom 

memory configurations.
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