
Dynamic Memory Management
for Real-Time Multiprocessor

System-on-a-Chip

Mohamed A. Shalan

Dissertation Advisor

Vincent J. Mooney III

School of Electrical and Computer Engineering

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

Introduction

In few years, we will have chips with one-
billion transistors
Chips will no longer be a stand-alone
system components but “Silicon boards”
A typical Chip will consist of multiple PEs of
various types, large global on-chip memory,
analog components, and custom logic (e.g.,
network interface)

November 19, 2003

System-on-a-Chip (SoC)

This architecture is suitable for embedded multimedia
applications, which require great processing power
and large volume data management

RISC 2

DSP 2

Analog Interface Network Interface

DSP 1
L1 Cache

L1 Cache

RISC 1

L1 Cache

Global Memory
(DRAM /SRAM)

Custom Logic

SoCDMMU

Reconfigurable
Logic

November 19, 2003

SoC
The existence of global on-chip memory,
arises the need for an efficient way to
dynamically allocate it among the PEs

November 19, 2003

Problem

How to deal with the allocation of the
large global on-chip memory between
the PEs in a dynamic yet deterministic
way?

November 19, 2003

Solution 1

Custom Memory Configuration (Static)
Hardware/Software co-synthesis with memory
hierarchies [Wayne Wolf]
Matisse [IMEC]
Memory synthesis for telecom applications
[WUYTACK et Al.], [YKMAN et al.]

November 19, 2003

Custom Memory Configuration
Pros:

Easy
Deterministic

Cons:
Inefficient memory utilization
System modification after implementation is
very difficult if not impossible

November 19, 2003

Solution 2

Shared memory multiprocessor
(Dynamic)

Using conventional software memory
Allocation/Deallocation techniques (e.g.,
Sequential Fits, Buddy Systems, etc.)
Sharing one heap (using locks)
Multiple heaps (one per processor)

November 19, 2003

Shared memory multiprocessor

Pros
Flexible
Efficient memory utilization

Cons
Worst case execution time is very high and
usually not deterministic

November 19, 2003

Our Solution

We introduce a new memory management
hierarchy, Two-Level Memory
Management, for a multiprocessor SoC
Two-Level Memory Management combines
the best of dynamic memory management
techniques (flexibility and efficiency) with
the best of static memory allocation
techniques (determinism).

November 19, 2003

Our Solution (2)

In Two-Level Memory Management, large on-
chip memory is managed between the on-
chip processors (Level Two)
Memory assigned to any processor is
managed by the operating system running on
that particular processor (Level One)
To manage Level Two, we present the
System-on-a-Chip Dynamic Memory
Management Unit (SoCDMMU)

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

Dynamic Memory Management

Automatic
Automatically recycles memory that a program will
not use again
Either as a part of the language or as an extension

Manual
The programmer has direct control over when
memory is allocated and when memory may be
de-allocated (e.g., by using malloc() & free())

November 19, 2003

Memory Allocation
Software Techniques

Sequential Fits

First Fit,
Next Fit,
Best Fit or
Worst Fit

November 19, 2003

Memory Allocation
Software Techniques

Segregated Free Lists

Simple Segregated Storage
Segregated Fit

November 19, 2003

Memory Allocation
Software Techniques

Buddy System

Bitmapped Fits

November 19, 2003

Memory Allocation
Hardware Techniques

Knowlton*

Binary buddy allocator that can allocate memory blocks
whose sizes are a power of 2

Puttkamer *

Hardware buddy allocator (using Shift Register)

Chang and Gehringer *

Modified hardware-based binary buddy system that
suffers from the blind spot problem

Cam et al. *

Hardware buddy allocator that eliminates the blind spot
problem in Chang’s allocator

* References are available in the thesis

November 19, 2003

Memory Allocation
Hardware Techniques

Request size is 3

It searches for 4

[3 rounded to the nearest power of 2]

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

Assumptions
The global memory is divided into a fixed number of
equally sized blocks (e.g., 16KB)
The global memory allocation done by the
SoCDMMU will be referred to as G_allocation
The global memory de-allocation done by the
SoCDMMU will be referred to as G_deallocation
The PE can G_allocate one or more than one block.
Different PEs can issue the G_allocation/ G_de-
allocation commands simultaneously

November 19, 2003

Assumptions

Each memory block has one
physical address and one or
more virtual addresses. The
block virtual address may differ
from one PE to another
The block virtual address will
be referred to as PE-address

November 19, 2003

Two-Level Memory Management

The SoCDMMU manages the memory between
the PEs
The OS (or custom software) on each PE
manages the memory between the processes
that run on that PE
The process requests the memory allocation
from the OS or custom software. If there in not
enough memory, the OS requests memory
allocation from the SoCDMMU

November 19, 2003

Types of Memory Allocation

Exclusive
• Only the owner can access it. No other PE can

access it

Read/Write
• The owner can read/write to it. Other PEs can

read from it if they G_allocated it as read only

Read Only
• The PE G_allocates the memory for read only.

Other PE G_allocated it as Read/Write

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

PE-SoCDMMU Interface

November 19, 2003

SoCDMMU Commands

November 19, 2003

The SoCDMMU Hardware

Address Converter

November 19, 2003

The SoCDMMU Hardware
The Basic SoCDMMU

Basic SoCDMMU

November 19, 2003

The SoCDMMU Hardware
The Basic SoCDMMU

Basic SoCDMMU

November 19, 2003

Basic SoCDMMU

The SoCDMMU Hardware
The Basic SoCDMMU

November 19, 2003

Basic SoCDMMU

The SoCDMMU Hardware
The Basic SoCDMMU

November 19, 2003

The SoCDMMU Hardware
The Allocation Unit

1 allocate(size,in[0:n-1]) {
2 for (i:=0 to n-1) {
3 if (in[i]==0 and size>0) {
4 out[i]:=1;
5 size:=size-1;
6 } else out[i]:=0;
7 }
8 if (size>0) return NOT_ENOUGH_MEMORY;
9 else return out;
10 }

November 19, 2003

The SoCDMMU Hardware
The Allocation Unit

0 0 0 0

1 1 1 1

0 0 1 1

21

1 0 0

0

November 19, 2003

The SoCDMMU Hardware
The Allocation Unit

November 19, 2003

The SoCDMMU Hardware
The Allocation Unit

8.5X3.3XComparison

17.5 MHz56.3 ns17930Un-optimized Alocator

150 MHz6.6 ns5364Optimized Allocator

Max. Clock Speed
(MHz)

Worst Delay
(ns)

Area
(NAND gates)

256 G_blocks.
Synthesized using Synopsys Design CompilerTM and a TSMC
0.25u library from LEDA Systems.

November 19, 2003

The SoCDMMU Hardware
Execution Times/Synthesis

Synthesized using the TSMC 0.25u .
Clock Speed: 300MHz
Size:

~7500 gates (not including the Allocation Table and
Address Converter)
Allocation Table: The size of 0.66KB 6T-SRAM
Address Converter: The size of 1.22 KB 6T-SRAM

November 19, 2003

Microcontroller Implementation

Stores the allocation Status
Executes the allocation commands
Executes the de-allocation
commands

Microcontroller Roles:

Custom HW: 16 Cycles WCET

uC: 231 Cycles BCET

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

Introduction

November 19, 2003

Introduction
To overcome the productivity gap,
Intellectual Property (IP) cores should be
used in SoC designs
Also, tools should be used to automatically
customize/configure the IPs

Processor Generators: Tensilica, ARC Core, etc.
Memory Compilers: Artisan, LEDA, etc.

The SoCDMMU as an IP core should be
customized before being used in a system
different than the one for which it was
designed

November 19, 2003

DX-Gt Overview

DX-Gt

H/W DB VPP

November 19, 2003

User Specified Parameters
The number and type of PEs
The number and size of the global on-chip
memory G_blocks
The memory type
The scheduling scheme to resolve concurrent
SoCDMMU requests
Memory G_blocks initially assigned to the PEs

November 19, 2003

The SoCDMMU Generation

November 19, 2003

Verilog Language
`define & `ifdef

Verilog 2000/2001
Generate loops (not supported by available
tools)

Verilog PreProcessor (VPP)
`ifdef, `ifndef, `if, `let, `for, `while,
`switch & `case
LOG2, ROUND, CEIL, FLOOR, EVEN, ODD, MAX,
MIN & ABS

Customizing the SoCDMMU

November 19, 2003

Customizing the SoCDMMU

VPP

November 19, 2003

Allocation Unit Optimization
0’s Counter

Almost Constant

k Subtractors

k x DS

SZ_MUX

Almost Constant

1’s Selector

m x d1

MUX

Almost Constant

November 19, 2003

Allocation Unit Optimization
Delay over the critical path

Delay = C + k*Ds + m*d1
Also, we have

n = k * m : n is the no. of G_blocks

This leads to
Delay = C + k*Ds + (n/k)*d1

The Delay is minimum when
k = SQR(n*d1/Ds) : k is power of 2

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

RTOS Support
Introduction

Conventional memory allocation algorithms
(e.g., Buddy-heap) are not suitable for Real-
Time systems because they are not
deterministic and/or the WCET is high
This is mainly because of memory
fragmentation and compaction. Also, most
allocation algorithms usually use linked lists
that do not have constant search time.
An RTOS uses a different approach to make
the allocation deterministic

November 19, 2003

RTOS Support
Introduction

An RTOS (e.g., uCOS-II, eCOS, VRTXsa, etc.,)
usually divides the memory into pools each of which
is divided into fixed-sized allocation units and any
task can allocate only one unit at a time

November 19, 2003

Atalanta Memory Management
Overview

Atalanta is an open source
RTOS developed at GaTech
Atalanta allows tasks to obtain
fixed-sized memory blocks from
partitions made of a contiguous
memory area
Allocation and de-allocation of
these memory blocks are done
in a constant time
No partition can be created at
the run-time

Partition

Block
SizePartition

Size

Start
Address

.

.

.

November 19, 2003

Atalanta Memory Management
API Functions

asc_partition_gain
Get free memory block from a partition (non-blocking)

asc_partition_seek
Get free memory block from a partition (blocking)

asc_partition_free
Free a memory block

asc_partition_reference
Get partition information

November 19, 2003

Atalanta Support for the SocDMMU
Objectives

Add Dynamic Memory Management to
Atalanta
Use the same Memory Management API
Functions
Keep the Memory Management Deterministic

November 19, 2003

Atalanta Support for the SocDMMU
Facts

The SoCDMMU needs to know where the allocated
physical memory will be placed in the PE address
space
The PE address space is much larger than the
physical address space (64 MB* vs. 4GB)
The PE-Address Space Fragmentation can be
overcome by:

Using the SoCDMUU G_move Command (pointers
problems)
Replicate the physical address space

* A typical global on-chip memory size for billion transistor multiprocessor SoC

November 19, 2003

Atalanta Support for the SocDMMU
New API New Functions

Find a place in the PE address space to which
to map the allocated memory.

asc_memory_find

Delete a partition and de-allocate memory
block if required.

asc_partition_delete

Create a partition by requesting memory
allocation from the SoCDMMU if necessary.

asc_partition_create
DescriptionFunction Name

November 19, 2003

Agenda

Introduction & Motivation

Dynamic Memory Management Background

The SoCDMMU Programming Model
The SoCDMMU

Automatic Generation of Custom SoCDMMU

RTOS Support

Experiments

November 19, 2003

Comparison to a Fully Shared-
Memory Multiprocessor System

Bus
Arbiter

SoCDMMU

ARM9

L1 $

ARM9

L1 $

ARM9

L1 $

ARM9

L1 $

Global Memory

Simulation Setup

Simulation was carried out using Mentor Graphics Co-Verification
Environment (CVE) , the cycle-accurate XRAY sotware
simulator/debugger and Synopsys VCS Verilog simulator
ARM SDT was used for software development

November 19, 2003

Experiment 1

Global memory of 16MB; Data L1 $ is 64 KB, Instruction
L1 $ is 64 KB
The ARM runs at 150 MHz.
Accessing the Global Memory costs 5 cycles for the first
access
A handheld device that utilizes this SoC can be used for
OFDM communication as well as other applications
(MPEG2 video player)
Initially the device runs an MPEG2 video player. When
the device detects an incoming signal it switches to the
OFDM receiver. The switching time (which includes the
time for memory management) should be short or the
device might lose the incoming message

November 19, 2003

Experiment 1

32 Kbytes
8 Kbytes0.5 Kbytes
32 Kbytes1.5 Kbytes
1.5 Kbytes1500 Kbytes
1 Kbytes5 Kbytes
32 Kbytes500 Kbytes
34 Kbytes2 Kbytes

OFDM ReceiverMPEG-2 Player

• Sequence of Memory Allocations Required

November 19, 2003

Experiment 1
Speedup of a single malloc()

8.21X7.92XSpeed up over uClibc malloc()

2.8X3.78XSpeed up over SDT malloc()

199 cycles28 cyclesSoCDMMU allocation

1646 cycles222 cyclesuClib malloc()

559 cycles106 cyclesSDT2.5 embedded malloc()

Execution Time
(Worst Case)

Execution Time
(Average Case)

November 19, 2003

Experiment 1
Speedup of a single free()

28.42X14.8XSpeed up over uClibc free()

6.64X5.9XSpeed up over SDT free()

28 cycles14 cyclesSocDMMU deallocation

796 cycles208 cyclesuClib free()

186 cycles83 cyclesSDT2.5 embedded free()

Execution Time
(Worst Case)

Execution Time
(Average Case)

November 19, 2003

Experiment 1
Speedup in transition time

3.9X4851 cycles1244 cyclesWorst Case

4.4X1240 cycles280 cycles Average Case

SpeedupUsing SDT malloc() and free()Using the SOCDMMU

12.46X15502 cycles1244 cyclesWorst Case

9.26X2593 cycles280 cycles Average Case

SpeedupUsing uClibc malloc() and free()Using the SOCDMMU

November 19, 2003

Experiment 2
Speedup in Execution Time

Same setup used for Experiment 1
GCC and Glibc were used for development
3 kernels from the SPLASH-2 application suite
are used

Complex 1D FFT (FFT)
Integer RADIX sort (RADIX)
Blocked LU decomposition (LU)

They were modified to replace all the static
memory allocations by dynamic ones

November 19, 2003

Experiment 2
Speedup in Execution Time

20.38%141491694333RADIX

27.13%101998375988FFT

9.90%31512318307LU

% of E. T. used to Memory
Management

Memory
Management E. T.
(Cycles)

E.T. (Cycles)Benchmark

19.59%96.10%0.99%5505558347RADIX

26.34%97.10%1.07%2951276941FFT

9.44%95.31%0.51%1476288271LU

%
Reduction in
Benchmark
E. T.

% Reduction
in Time used
to Manage
Memory

% of E. T. used
to Memory
Management

Memory
Management
E. T.
(Cycles)

E.T.
(Cycles)

Benchmark

Glibc malloc() & free()

Using the SoCDMMU

November 19, 2003

Area Estimation of The SoC

* Using dual-port 6T SRAM Cells

0.186%SoCDMMU to SoC (%)

0.0186%SoCDMMU w/o memory elements to SoC

160.965M TransistorsSoC (total)

300K TransistorsSoCDMMU (total)

4 x 60K = 240K TransistorsSoCDMMU Address Converters (4)

30K TransistorsSoCDMMU Allocation Table

30K TransistorsSoCDMMU (w/o memory elements)

134.217M TransistorsGlobal On-Chip Memory (16MB)

4 x 6.5M = 26M Transistors*4 L1 Caches (64KB+64KB)

4 x 112K = 448K Transistors4 ARM9TDMI Cores

Number of TransistorsElement

November 19, 2003

Area Estimation of The SoC

For this 161 Million transistor chip, the
SoCDMMU consumes 300K transistors
(0.186% of 161M) and yields a 4-10X
speedup in memory allocation/de-allocation

November 19, 2003

Conclusion
We introduced The Two-Level memory management
hierarchy for multiprocessor SoC
We showed how Level Two in the hierarchy can be
implemented using the SoCDMMU
We gave a sample hardware implementation of the
SoCDMMU
We introduced DX-Gt to automatically
configure/customize the SoCDMU hardware
We showed how to add the SoCDMMU support to a
real-time OS
Our Experiments show that using the SoCDMMU
speeds up the application transition time as well as
the application execution time

November 19, 2003

Topic Related Publications
M. Shalan and V. Mooney, “A Dynamic Memory Management Unit for
Embedded Real-Time System-on-a-Chip,” Proceedings of the
International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES 2000), pp. 180-186, November 2000.
M. Shalan and V. Mooney, “Hardware Support for Real-Time Embedded
Multiprocessor System-on-a-Chip Memory Management," Proceedings of
the Tenth International Symposium on Hardware/Software Codesign
(CODES'02), pp. 79-84, May 2002.
M. Shalan, E. Shin and V. Mooney, “DX-Gt: Memory Management and
Crossbar Switch Generator for Multiprocessor System-on-a-Chip,” to
appear in the Proceedings of the 11th Workshop on Synthesis and
System Integration of Mixed Information technologies (SASIMI 2003),
April 2003.
M. Shalan and V. Mooney, “Hardware Support for Real-Time Embedded
Multiprocessor System-on-a-Chip Memory Management,” Accepted for
publication in ACM Transactions in Embedded Computing Systems
(TECS).
M. Shalan and V. Mooney, “Hardware Support for Real-Time Embedded
Multiprocessor System-on-a-Chip Memory Management,” Georgia
Institute of Technology, Atlanta, Georgia, Technical Report GIT-CC-
03-02, 2003.
Hardware Software Real-Time Operating System, The δ RTOS, preparing
2 chapters

November 19, 2003

Questions

